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 A B S T R A C T

The in-memory computing (IMC) systems based on emerging technologies have gained significant attention 
due to their potential to enhance performance and energy efficiency by minimizing data movement between 
memory and processing unit, which is especially beneficial for data-intensive applications. Designing and 
evaluating systems utilizing emerging memory technologies, such as resistive RAM (RRAM), poses considerable 
challenges due to the limited support from electronics design automation (EDA) tools for rapid development 
and design space exploration. Additionally, incorporating technology-dependent variability into system-level 
simulations is critical to accurately assess the impact on system reliability and performance. To bridge this 
gap, we propose RRAMulator, a field-programmable gate array (FPGA) based hardware emulator for RRAM 
crossbar array. To avoid the complex device models capturing the nonlinear current–voltage (IV) relationships 
that degrade emulation speed and increase hardware utilization, we propose a device and variability modeling 
approach based on device measurements. We deploy look-up tables (LUTs) for device modeling and use 
the multivariate kernel density estimation (KDE) method to augment existing data, extending data variety 
and avoiding repetitive data usage. The proposed emulator achieves cycle-accurate, real-time emulations 
and provides information such as latency and energy consumption for matrix mapping and vector–matrix 
multiplications (VMMs). Experimental results show a significant reduction in emulation time compared to 
conventional behavioral simulations. Additionally, an RRAM-based discrete Fourier transform (DFT) accelerator 
is analyzed as a case study featuring a range of in-depth system assessments.
1. Introduction

As technology advances and the demand for faster and more energy-
efficient computing grows, the development of computational systems 
encounters significant challenges, particularly the memory-wall prob-
lem inherent in the conventional von Neumann architecture. The data 
movement between processing unit and memory becomes the main bot-
tleneck limiting the system performance and energy efficiency [1]. This 
issue becomes critical today because modern applications, especially for 
artificial intelligence (AI) and other data-intensive computing, require 
massive amounts of data to be processed quickly and efficiently.

To address this issue, in-memory computing (IMC) systems are 
proposed as a promising computing paradigm. Unlike traditional com-
puting architectures that rely on the constant data movement between 
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memory and processing units, IMC directly embeds the computations 
within the memory itself, which significantly reduces the costly data 
transfer overhead [2].

Resistive RAM (RRAM) is an emerging memory technology that 
offers several benefits including high storage density, low energy con-
sumption, multilevel storage, and rapid read operations [3]. Addition-
ally, as a non-volatile memory (NVM), RRAM retains data without 
requiring a power supply, enhancing overall system efficiency. Due to 
the CMOS compatibility, the RRAM devices can be tightly integrated 
with the peripheral circuitry for write and read operations, resulting in 
promising read energy efficiency and latency [4].

In addition to the usage as memory for data storage, RRAM devices 
can be configured as crossbar arrays to implement IMC archietcures for 
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computing vector-matrix multiplications (VMMs). The matrix elements 
are stored in the RRAM crossbars as device conductance, while the 
vectors are encoded as input voltages applied on the crossbars. This ar-
chitecture allows the VMMs to be performed in the analog domain with 
high parallelism and minimized data movements, which contributes 
to achieving highly efficient computations [5]. As a result, RRAM 
crossbars are highly attractive for implementing systems that require 
massive VMMs, such as hardware accelerators for artificial neural 
networks (ANNs) [6,7], homomorphic encryption (HE) [8], and Fourier 
transform [9]. A comprehensive review of hardware accelerators based 
on emerging technologies can be found in [10].

Although the RRAM technology exhibits promising potential, the 
corresponding design flow is not yet mature enough to enable rapid 
prototyping for holistic design space exploration [11]. One of the key 
challenges is developing device models that precisely capture device 
dynamics for simulations under various stimuli to accurately predict 
system behavior and evaluate hardware overhead [12]. Meanwhile, 
the device models need to be compact to ensure acceptable simulation 
time, especially as systems scale up to include millions of devices 
processing information in parallel to handle complex computational 
tasks [7].

The switching mechanism of RRAM devices relies on the growth and 
rapture of conductive filaments (CFs) in the oxide layer. The inherent 
stochastic nature leads to variability both between different devices and 
across multiple switching cycles, which are known as device-to-device 
and cycle-to-cycle variability, respectively [13]. Besides, some other 
non-ideal effects can affect the system reliability, such as conductance 
drift [14], read disturb [15], conductance fluctuation [16], and tem-
perature dependency [17]. These non-ideal effects pose challenges in 
ensuring consistent performance and reliability across different devices 
and operating conditions. Furthermore, immature fabrication process 
can introduce defects that cause devices to become stuck in specific 
resistance states, leading to system malfunctions [18]. Therefore, it is 
crucial to model and manage these non-ideal effects throughout the 
hardware life cycle, starting from the system design stage [19].

To enable rapid simulations and expedite the iterative design op-
timizations, we introduced a field-programmable gate array (FPGA) 
based emulator for the RRAM crossbar array including peripheral cir-
cuitry in [20]. The emulator leverages a system-level behavioral model 
of the RRAM crossbar array described at the register-transfer level 
(RTL) [21]. This approach offers significant advantages over traditional 
central processing unit (CPU) based simulations. The contributions 
in [20] can be summarized as:

1. Hardware Acceleration: The RRAM crossbar model including 
peripheral circuitry is implemented on the FPGA platform, which 
outperforms the CPU-based behavioral simulations and achieves 
real-time emulations.

2. Data-driven Variability Modeling: A novel data-driven vari-
ability modeling approach based on multivariate kernel density 
estimation (KDE) is proposed. This approach effectively aug-
ments existing measurement data, extending data variety and 
allowing for the emulation of large-scale systems without data 
point reuse or additional experiments.

3. Emulating Mapping and VMMs: Leveraging the augmented 
data that models variability and incorporating modules like the 
write-verify algorithm, our platform can emulate system behav-
iors with variability for matrix mapping and VMM operations. 
This enhanced capability allows for more insightful analysis of 
system performance under realistic variability conditions.

4. Energy Consumption Evaluation: To assess the emulated hard-
ware’s efficiency, the emulator is interfaced with the NeuroSim 
framework [22]. This integration features the estimation of en-
ergy consumption for different operations.

In this paper, we extend our previous work in [20] with the follow-
ing aspects:
2

1. Expanded Device Characterization: To rigorously validate the 
efficacy of the proposed data-driven augmentation approach for 
modeling device-to-device variability, the experimental dataset 
is substantially expanded. The number of characterized devices 
is increased from 256 to 4096, encompassing the entire memory 
array. This comprehensive characterization ensures a more accu-
rate representation of the inherent variability within the device 
population.

2. RRAM-based DFT Case Study: A thorough analysis is conducted 
on an RRAM-based discrete Fourier transform (DFT) accelera-
tor to investigate the trade-off between computational accuracy 
and energy consumption. This case study serves as a practical 
demonstration of the emulator’s capability to assess system-level 
performance under realistic device variability conditions.

The reminder of this paper is organized as follows: Section 2 pro-
vides an overview of related works focusing on FPGA emulation for 
emerging technologies. Section 3 details the methodologies employed 
in this work, including LUT-based device modeling, data-driven vari-
ability modeling, and the architecture of the proposed hardware emu-
lation platform. Section 4 presents a comprehensive evaluation of the 
FPGA emulator, and Section 5 introduces a case study demonstrat-
ing its efficacy. Finally, Section 6 summarizes the key findings and 
contributions of this work.

2. Related works

One of the challenges in simulating large-scale RRAM-based systems 
is the incorporation of complex device models that capture the inherent 
non-linear current–voltage (IV) characteristics and switching dynamics 
of individual devices. For instance, in certain models, the evolution 
of device conductance during resistive switching is attributed to the 
modulation of the gap between the CF and bottom electrode (BE) 
in the oxide layer, a process described by computationally intensive 
differential and hyperbolic equations [12]. This complexity is further 
compounded when considering large-scale systems with numerous de-
vices operating in parallel, as the computational demands increase 
significantly. Additionally, incorporating device-to-device variability 
into the simulation model introduces another layer of complexity, 
further exacerbating the computational burden and simulation time.

FPGAs offer a promising platform for device-aware simulations of 
RRAM systems, effectively addressing the extensive computational de-
mands posed by the inherent complex device and variability modeling. 
This enables efficient emulation of system behaviors, accelerating the 
development and optimization of RRAM-based systems. Leveraging 
their highly parallel processing capabilities, FPGAs facilitate high-speed 
emulation, overcoming the speed and scalability limitations often en-
countered in software-based simulations. This high-speed emulation 
becomes essential for large-scale RRAM systems. It also enables inte-
grating the RRAM systems into multi-core processors like RISC-V as 
hardware accelerators [29] and co-simulations in real time. Moreover, 
their reconfigurability and flexibility make FPGAs well-suited for rapid 
prototyping and extensive design space exploration in the early stage 
of system development.

Several studies utilized FPGA emulators to accelerate simulations 
of systems based on emerging memory technologies, as summarized in 
Table  1. Ntinas et al. [23] implemented a 1D RRAM crossbar on FPGA, 
using a behavioral model of bipolar RRAM devices to emulate vector-
vector multiplications in a single-layer ANN. This approach captured 
timing information crucial for cycle-accurate simulations, accurately re-
flecting device behavior at each time step. In contrast, Tolba et al. [24] 
emulated an RRAM-based multi-bit XNOR gate as the fundamental 
building block for an ANN, employing a simplified device model with 
five discrete conductance levels. While not explicitly mentioned, the 
omission of timing information in their model may have implications 
for achieving cycle-accurate simulations. Both studies [23,24] imple-
mented pinched hysteresis loops for voltage-controlled resistance in 
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Table 1
Comparison of the proposed work against state-of-the-art methods.

Work [23] [24] [25] [26] [27] [28] This work
Topology 1D Crossbar XNOR Crossbar Crossbar Register Cache Crossbar
Application IMC IMC IMC IMC Storage Storage IMC

Scale Small Small Large Large Large Large Large
Cycle-accurate ✓ N × × ✓ ✓ ✓

Device Programming ✓ × × × ✓ ✓ ✓

Device Variability × × ✓ ✓ × × ✓

Fault Injection × × ✓ ✓ × × ×
Energy Evaluation × × × × ✓(Only dev.) × ✓

✓: Supported, ×: Not Supported, N: Not Given.
RRAM devices and compared hardware simulation results with the 
mathematical device models. However, a notable limitation in both 
works is the absence of device variability considerations, hindering 
insights into the impact of variability on system reliability.

Luo et al. [25] presented an emulator implemented on the FPGA 
platform for RRAM-based spiking neural networks (SNNs). Their design 
includes controllers and crossbar interconnections, facilitating compre-
hensive system-level evaluations. The authors explored the impact of 
network-on-chip (NoC) configurations on system performance through 
various core mapping schemes and buffer depths. Additionally, the 
integration of a noise generator enabled the study of hardware vulnera-
bility to variability and stuck-at faults. However, this design prioritized 
scalability over cycle-level accuracy by serializing result accumulations 
within the crossbars. In [26], a FPGA-based emulation framework for 
RRAM-based ANNs was reported. This work offloaded massive VMMs 
in the crossbars to onboard multiply-and-accumulate (MAC) tree units 
for high parallelism. A runtime software stack with instructions and 
scheduling was implemented for flexible emulation of various ANN 
models. Variability and defects were injected by preprocessing weights 
streamed into MAC units. Both emulators [25,26] scarified the cycle-
accurate emulation to achieve high performance and scalability. They 
focused on the inference phase to evaluate accuracy under device vari-
ations and faults, and the device programming process was simplified 
as standard memory write operations. Furthermore, none of the dis-
cussed works [23–26] considered energy efficiency, which is a crucial 
evaluation criterion for emerging technology-based IMC systems.

Beyond IMC systems, FPGA emulation has also been applied to 
systems utilizing emerging technologies as NVMs. Ruffini et al. [27] 
demonstrated an FPGA-based framework for NVM-based energy-
harvesting intermittent computing systems, incorporating intentional 
delays in the read/write process to simulate latency for various oper-
ations. The authors implemented and tested different backup policies 
and compared the energy efficiency. However, their analysis focused 
solely on the energy consumption of the NVM devices themselves, 
neglecting the peripheral circuitry required to drive and interface with 
the devices. Zhao et al. [28] presented an FPGA-based framework for 
emulating various emerging NVM technologies as L1 data caches within 
a RISC-V processor environment. They evaluated the performance 
impact of different NVM configurations using benchmark applications, 
demonstrating the framework’s capability to assess the performance of 
emerging memory technologies in realistic processor settings. Similar 
to [27], the device variations are not taken into account, which may 
impact the performance and reliability of the systems based on NVMs.

It is evident that existing emulators targeting large-scale IMC sys-
tems with emerging devices do not support cycle-accurate emulations, 
limiting detailed timing analysis. Furthermore, the device programming 
process, crucial in edge learning systems where frequent retraining 
and weight updates occur [30], is not adequately emulated in existing 
platforms. To validate and assess accelerators in realistic environ-
ments, integrating the system into a larger platform for simulation 
is necessary [28]. In such scenarios, real-time, cycle-accurate emula-
tion becomes essential, enabling co-simulation with architectures like 
RISC-V for comprehensive system-level evaluations [29].

To address these gaps, we propose RRAMulator, an FPGA-based 
RRAM crossbar emulator. RRAMulator employs efficient device and 
3

variability modeling approaches, accurately capturing device behavior 
in large-scale systems without compromising emulation speed. Device 
variability is considered for programming and VMM operations with 
RRAM crossbars. By implementing behavioral models of peripheral 
circuitry and the write-verify algorithm interfacing with crossbars, 
RRAMulator can emulate the entire system’s behavior under various 
scenarios. Additionally, energy efficiency, a key advantage of emerging 
technology-based IMC systems, is evaluated by feeding traces generated 
by emulator into NeuroSim framework [22]. Therefore, RRAMulator 
can emulate the system behaviors in a cycle-accurate manner, and eval-
uate the performance and energy efficiency under device variations. 
Notably, the proposed methodologies are not limited to RRAM-based 
systems and can be extended to other emerging technologies.

3. Methodology

3.1. LUT-based device modeling

Accurate device models are crucial for understanding the behavior 
and performance of emerging memory technologies like RRAM and 
guiding device engineering efforts. However, it is important to recog-
nize a key distinction between device-level and system-level simula-
tions. Device-level simulations focus on the intricate physical processes 
within individual devices, often requiring detailed models that cap-
ture the underlying physics. In contrast, system-level simulations aim 
to evaluate the performance of the entire memory system, including 
interactions between numerous devices and peripheral circuitry.

While detailed device models are essential for understanding device-
level behavior, they can be computationally expensive and may not 
be strictly necessary for system-level simulations. System-level sim-
ulations prioritize capturing the essential device characteristics that 
significantly impact overall simulation speed. Therefore, deploying de-
vice models for system-level simulations needs to compromise between 
accuracy and computational complexity.

To minimize the computational overhead of device models and 
improve system simulation speed, we employ a look-up table (LUT) 
based approach [21]. This method focuses on capturing the essential IV 
relationship of the device, bypassing the need to solve complex equa-
tions that reflect device dynamics [12]. Similarly, another LUT-based 
device model is utilized in [31] to accelerate the analog simulations of 
the RRAM-based systems.

We demonstrate the efficacy of our proposed approaches using 
one-transistor-one-resistor (1T1R) RRAM devices manufactured at IHP 
with 130 nm SiGe BiCMOS technology. A memory chip containing 
64 × 64 1T1R devices is characterized to collect data, which is sub-
sequently used for analysis and evaluation of the proposed methods. 
This specific device serves as a representative example to showcase the 
adaptability of our modeling approaches across different device types 
and programming techniques. 

Fig.  1 presents the schematic and corresponding transmission elec-
tron microscopy (TEM) image of an IHP 1T1R device. The metal–
insulator–metal (MIM) stack, comprised of TiN/HfO2/Ti/TiN, is mono-
lithically fabricated with conventional CMOS in the back-end-of-line 
(BEOL) process. As a memory, information can be encoded as device 
conductance by applying voltages to the device terminals. Positive 
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Fig. 1. Cross-sectional TEM image (left) [12] and schematic (center) of the 1T1R de-
vice. Resistive switching process with the change of CFs in the oxide layer (right) [20].

Fig. 2. Waveform of the ISPVA. Each write pulse with Vwrite is followed by a read 
pulse with Vread to check if the read out current reaches the predefined target with Ith. 
If not, a subsequent write pulse with the incremental amplitude is applied [13].

voltages between the bitline (BL) and sourceline (SL) switch the device 
from high resistance state (HRS) to low resistance state (LRS), while 
inverse polarity pulses reverse this transition. These processes are de-
noted as SET and RESET, respectively. The resistive switching behavior 
observed in RRAM devices is widely attributed to the formation and 
rupture of CFs within the oxide layer [12] , as depicted in Fig.  1. The 
NMOS transistor in the 1T1R device functions as a selector, enabling 
individual device access within a crossbar array and eliminating sneak 
path currents. Some device models describe the change of conductance 
during SET and RESET operations as a complex function of the gap 
between the CF and BE in the oxide layer, often involving differential 
and hyperbolic equations [12]. This complexity hinders their use in 
large-scale system simulations. Our LUT-based approach addresses this 
issue by capturing essential device behavior without the need for 
computationally expensive calculations.

To precisely control device conductance during programming and 
mitigate device-to-device variability, write-verify algorithms are com-
monly employed using pulse trains [7,13,32]. These write-verify al-
gorithms consist of alternating write pulses and low-amplitude read 
pulses. The read pulse verifies whether the target conductance level 
has been achieved without disturbing the stored information. The 
write-verify algorithm should be implemented in the emulator as it 
directly impacts data fidelity and write latency. Accurately modeling 
this process ensures simulated behavior aligns with actual hardware, 
enabling effective algorithm evaluation and parameter optimization to 
achieve the optimal programming accuracy and speed. Additionally, it 
allows for a more realistic assessment of overall system performance 
and energy consumption, which are influenced by the write process.

In this work, we integrate the incremental step pulse with verify 
algorithm (ISPVA) into our emulator to achieve reliable multilevel 
storage [13]. Fig.  2 illustrates the voltage waveform deployed in this 
approach. After each write pulse with the amplitude of Vwrite to alter 
the device conductance, a read pulse with Vread is applied to determine 
if the output current reaches the predefined threshold (Ith). If not, 
another write pulse with higher amplitude is applied, incrementally 
increasing in fixed steps until Ith is reached, indicating the completion 
of programming for the selected device.

During the SET operation, modulating the NMOS’s gate voltage (Vg) 
applied to wordline (WL) controls compliance current flowing through 
4

Fig. 3. The measured evolution of Iread from HRS to three different LRSs. The current 
values are averaged over 4096 1T1R devices. Iread are measured at a voltage of 
Vread = 0.2 V.

Fig. 4. Architecture of the LUT-based device modeling approach with write and read 
operations.

the MIM stack, enabling transitions from HRS to various LRSs [13]. 
Reliable multilevel storage is realized by identifying appropriate pairs 
of {Vg, Ith} for each resistance state based on device characterization. 
Fig.  3 shows the evolution of the mean readout currents (Iread) mea-
sured at a read voltage (Vread) of 0.2 V across 4096 devices, fabricated 
in a 1T1R memory array. The devices are programmed with ISPVA with 
an incremental voltage step of 0.1 V. The measured data demonstrates 
reliable storage of four distinct resistance states: one HRS and three 
LRSs.

To efficiently model large-scale systems with numerous devices op-
erating in parallel, we employ a LUT-based device modeling approach. 
This method prioritizes modeling speed by focusing solely on the 
critical information for system-level simulations: the IV relationship. 
Instead of capturing detailed information like conductance changes 
resulting from voltage-induced variations in CF dimensions [12], the 
LUT-based approach provides a streamlined representation of device 
behavior.

The architecture of the LUT-based model, depicted in Fig.  4, com-
prises three LUTs, a buffer for each device, and two multiplexers. The 
LUTs store pre-generated IV relationship values for each LRS transiting 
from HRS. During write operations, the LUTs are swept to find the 
matched output currents corresponding to the input voltage (Vwrite) for 
each LRS. The matched output current for the target state is selected 
based on the simultaneously applied Vg on the WL and stored in 
the buffer. For the FPGA implementation, the buffers can be realized 
with block RAMs (BRAMs), and LUTs can be shared among devices in 
crossbar arrays for efficiency. During read operations, if both Vread and 
Vg for the device are applied concurrently, indicating device is selected, 
the output current (Iread) is presented. Otherwise, the output remains 
zero. During VMMs operations, multiple devices sharing the same SL 
are selected simultaneously, and their outputs are accumulated.

The LUT-based modeling approach offers a lightweight, efficient 
method for device modeling, significantly accelerating system-level 
simulations. It captures device dynamics after each applied pulse, with 
model accuracy directly tied to the stored LUT values. This approach 
is highly flexible, allowing for the utilization of data samples gen-
erated from device-level models or directly measured experimental 
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Fig. 5. Device-to-device variability in RRAM programming. (a) Evolution of Iread for 4095 devices programmed to LRS3 using ISPVA. (b) Distribution of programming pulse 
counts, influencing latency and energy consumption for device programming. (c) Distribution of Iread at the end of programming, impacting accuracy of the stored information and 
computations.
results. Furthermore, system-level variability and fault injection can 
be readily implemented by modifying the LUT values. By populating 
the LUTs with data from various emerging memory technologies and 
the corresponding writing algorithms, the system-level behavior can be 
investigated across a broad collections of device characteristics. This 
enables users to evaluate the performance implications of integrating 
different memory technologies into their systems.

While this model is limited to representing device behavior under 
the specific conditions of the simulation or measurement campaign 
used to generate the LUTs, this limitation can be mitigated by gen-
erating LUTs for a wide range of operating conditions or by employ-
ing adaptive techniques to update LUTs during simulation based on 
observed device behavior.

3.2. Device variability modeling

Device-to-device variability in RRAM technology arises from a com-
bination of factors. Fluctuations in the oxide layer’s thickness and com-
position during fabrication contribute to the observed differences in 
device behavior [33]. Additionally, during programming, the stochastic 
nature of CF formation leads to variations in their size and shape. 
Variability can significantly degrade the accuracy of stored information 
and computational results in RRAM-based systems. Device-to-device 
variability not only affects accuracy but also contributes to variations in 
the number of pulses required for state transitions, impacting program-
ming latency and energy consumption. Therefore, incorporating this 
characteristic into system-level simulations is crucial for quantifying its 
impact and developing effective mitigation strategies. It is also neces-
sary to accurately capture this information in system-level emulators 
without introducing significant computational overhead.

Fig.  5(a) illustrates the measured currents of devices programmed 
from HRS to LRS3, which is the LRS with the highest conductance. 
During programming, multilevel storage and variability reduction are 
achieved through the use of ISPVA.

All devices are initially subjected to a write voltage of 0.5 V. A read 
pulse of 0.2 V is then applied to each device, and the resulting read 
current is compared to a threshold current, which is 32 μA for LRS3. 
Devices that remain unswitched receive subsequent write pulses with 
incrementally increased amplitude of 0.1 V, each followed by a read 
pulse. For devices that have already switched, only the read pulse is 
applied to record their conductance. In summary, during programming, 
write pulses are applied exclusively to devices that have not yet reached 
the target state, while read pulses are applied to the entire array. The 
programming phase concludes once all devices achieve the threshold 
current. Note that one device failed to switch despite increased write 
pulses, hence only 4095 devices are shown in the plot.

During programming, two types of variability are relevant to system 
performance and reliability:
5

1. Variability in Write Pulse Count: The number of write pulses 
required to reach the target conductance level varies signifi-
cantly across devices. As shown in Fig.  5(b), while most de-
vices reach LRS3 within six to ten pulses, a subset exhibits tail 
distribution behavior, requiring upwards of 12 pulses. Ignor-
ing or simplifying this tail distribution can lead to inaccurate 
system-level models and unrealistic performance predictions.

2. Variability in Read Currents: The variability in read currents 
after switching, as illustrated in Fig.  5(c), directly impacts stored 
information and computational accuracy. Overlapping read cur-
rent distributions between different resistance states can intro-
duce ambiguity and errors in data interpretation, potentially 
leading to incorrect computational results.

To accurately model device behavior and integrate it into system-
level simulations with cycle accuracy, it is essential to simultaneously 
capture the two correlated device-to-device variability observed during 
programming. These variations impact both the latency and energy 
consumption to program devices in crossbars, as well as computational 
accuracy. The objective is to reproduce device behaviors illustrated 
in Fig.  5(a) while preserving the distributions of programming pulse 
counts and readout currents shown in (b) and (c).

While some device models incorporate simulations of device vari-
ability, incorporating such detailed models into system-level simula-
tions often proves impractical due to scalability limitations and high 
computational costs. To overcome these challenges, data-driven ap-
proaches that leverage measured device data emerge as a more efficient 
alternative. One such approach, known as oversampling, involves ran-
domly selecting devices from the existing measured dataset until the 
desired population size for the simulation is reached [15]. However, 
this method has limitations: when the target population exceeds the 
original dataset size, data points must be reused, preventing extrapola-
tion beyond the measured data and limiting sample diversity. Another 
approach is fitting probability density functions (PDFs) to measured 
data for each write pulse, then generating new data samples for simu-
lation [29]. It expands the data volume without directly reusing raw 
data. However, this approach also presents several challenges: first, 
fitting complex distributions observed in real devices to known PDFs 
might not always be feasible, and some approximations are required. 
Second, generating massive new data samples on-the-fly during runtime 
can be computationally intensive. Most importantly, the correlation 
between the two variability types may not be preserved since data 
generation for each device after each pulse is performed indepen-
dently. This lack of captured correlation can lead to inaccurate system 
behavior representation, potentially yielding inaccurate performance 
predictions.

To overcome the limitations of the aforementioned data-driven 
approaches, we propose leveraging multivariate KDE method to extend 
the available data based on device measurements for variability mod-
eling. Multivariate KDE, a non-parametric statistical method, estimates 
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Fig. 6. The augmented data for RRAM device programming based on measured data. (a) The evolution of augmented Iread for 4095 devices programmed to LRS3. (b) Comparison of 
the number of pulses required to program devices across augmented and raw data. (c) Comparison of raw and augmented data distributions for final Iread values after programming.
Fig. 7. The correlation between the number of write pulses and read currents for the 
raw and augmented data.

the PDF of multidimensional data without assuming the underlying 
parametric distribution [34]. Unlike oversampling, which relies on the 
repetition of existing data points, our KDE-based approach generates 
new data points that capture the underlying statistical characteristics 
of the original measurements. In our case, the multidimensional data 
consists of current evolution traces measured across devices during 
programming cycles shown in Fig.  5(a). By employing Gaussian kernel 
functions within KDE, we construct a smooth, continuous, and joint 
PDF that accurately captures the complex relationships and correlations 
between different aspects of device behavior. This refined PDF serves 
as a generative model, enabling us to synthesize new current evolution 
traces that exhibit the same statistical properties as the original data. In 
other words, the generated traces are statistically close to the measured 
ones, but they provide additional samples to expand the dataset and 
improve the sample diversity in our system-level simulations.

Fig.  6(a) shows the augmented current evolutions of devices pro-
grammed from HRS to LRS3, generated based on measurements of 
real devices shown in Fig.  5. For direct comparison, the number of 
synthesized traces matches the original dataset size. However, the data 
generation is not limited to this quantity, and a significantly larger 
number of data samples can be created. Comparing the distributions 
of programming duration and final current values in Fig.  6(b) and (c) 
reveals a close alignment between the generated data and the raw data 
traces, validating the effectiveness of the proposed data augmentation 
method. This leads to the generation of realistic and diverse synthetic 
data traces that faithfully reflect the characteristics of the real devices.

To further validate the preservation of correlations between write 
pulse count and read current variability in the generated data, we 
plot the correlation between these two variables in Fig.  7. The strong 
agreement between the raw and augmented data distributions confirms 
that the synthesized data accurately captures the inherent correlations 
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present in the original measurements. Both distributions show similar 
trends: devices requiring less write pulses tend to have wider distri-
butions in their final Iread values. Besides, the devices requiring more 
number of pulses to switch lead to a low-amplitude Iread after switch-
ing, which implies the devices that are more difficult to switch may 
ultimately settle into lower conductance. Maintaining this correlation 
is essential for ensuring the accuracy of system-level simulations.

Multivariate KDE provides a valuable tool for augmenting initial 
RRAM measurement data, expanding the available dataset for accurate 
modeling of large-scale RRAM systems with numerous devices without 
the need to reuse raw data. By pre-generating data traces through 
multivariate KDE, this approach can be seamlessly integrated with 
the LUT-based device modeling methodology. By combining these two 
approaches, we can incorporate comprehensive variability modeling 
into our FPGA emulator, accommodating a large number of devices 
with diverse behavior characteristics. This allows us to accurately 
simulate the impact of device-to-device variability on RRAM crossbar 
performance, including metrics such as programming latency, energy 
consumption, and computational accuracy. The detailed implementa-
tion of this combined approach on the FPGA platform is presented in 
the following subsection.

3.3. System architecture of RRAMulator

FPGA technology, with its inherent reconfigurability and high par-
allelism, offers a promising platform for cycle-accurate emulation of 
large-scale RRAM systems, effectively capturing the impact of device-
to-device variability.

Fig.  8 shows the overall architecture of the proposed FPGA-based 
RRAM crossbar emulator. RRAMulator implements essential operations 
for RRAM crossbar arrays, including write, read for memory appli-
cations, and VMMs for IMC applications. To facilitate efficient data 
transfer between the PC and the FPGA emulator, we developed a C-
based software program using the Xilinx Vivado software development 
kit (SDK). This program manages the transmission of input frames to 
the emulator and retrieves the processed data from the BRAMs. Input 
frames contain predefined operational codes specifying the desired 
operation (e.g., programming, read, VMM), along with the addresses of 
the target RRAM devices within the crossbar array. These frames also 
include the necessary data payloads, such as matrix values for program-
ming or input vectors for VMM operation. To minimize communication 
overhead, burst mode transmission is supported, allowing for the effi-
cient transfer of input and output data for an entire column or row with 
a single operation. Input frames are transmitted to the programmable 
logic (PL) of the FPGA through general-purpose input/output (GPIO) 
interfaces and are subsequently processed by an instruction decoder. 
The decoder then parses the input frames, extracting relevant instruc-
tions and data, which are then forwarded to the RRAM crossbar array 
for execution.

The RRAM crossbar, depicted in Fig.  8(b), comprises the emulated 
RRAM devices and peripheral circuitry. Some peripheral components 
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Fig. 8. (a) System architecture of the proposed FPGA-based RRAM emulator. (b) 
Detailed architecture of the emulated RRAM crossbar array including peripheral 
circuitry [20].

essential for RRAM operation are mixed-signal circuits that cannot be 
fully emulated on an FPGA. To ensure cycle-accurate emulation, we 
construct behavioral models of these components, incorporating crucial 
timing information to accurately replicate their functionality.

When an operation is initiated, the control unit orchestrates the sys-
tem by dispatching control signals to the BL and WL drivers, adhering 
to the generated timing information defining pulse width, amplitude, 
and synchronization. This synchronization ensures that the voltages 
applied on the BL and WL coincide precisely during the programming 
and read operations, mimicking the behavior of pulses driving the 
RRAM devices. Furthermore, the amplitudes of the BL and WL voltages 
determine the conductance value to be stored in the device model of 
the selected cell. At the output, successive approximation register (SAR) 
based analog-to-digital converters (ADCs) are shared across rows via 
a multiplexer to amortize the high hardware costs [2]. To accurately 
model SAR ADC latency, the ADC output is streamed out with shift 
registers.

Device-to-device variability is represented by pre-loading augmented
data traces, derived for each resistance state via multivariate KDE, 
into a dedicated variability BRAM. A linear-feedback shift register 
(LSFR) generates uniformly distributed random numbers to sample 
these traces during runtime. When a device programming operation 
is initiated, a random number is recorded as an index, along with 
the target resistance state’s index. This combined index fetches the 
corresponding data trace from the variability BRAM, which dictates 
the specific LUT used in the device model to represent the device’s 
current evolution during programming. Incorporating this trace allows 
the emulated device model to exhibit realistic variations in program-
ming pulse count and read currents, reflecting the inherent statistical 
variability of real RRAM devices. This implementation is advantageous 
as the computationally intensive data augmentation with multivariate 
KDE is performed offline, leaving only the negligible latency of data 
retrieval from the variability BRAM as overhead during emulation. 
This ensures that variability modeling does not bottleneck the overall 
emulation speed.  In addition to device-to-device variability, cycle-to-
cycle variability can also be integrated into the platform by storing 
cycle-specific data in the variability BRAM along with a corresponding 
cycle index. During programming, variability data can be accessed 
based on both device and cycle indices, enabling accurate modeling 
of cycle-to-cycle and device-to-device variations simultaneously. 
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The ISPVA write-verify algorithm is implemented within the emu-
lator. Threshold values for different conductance states are configured 
via the developed software. The pulse trains comprised of Vwrite and 
Vread in Fig.  2 are generated automatically by the control unit with BL 
and WL drivers.

During programming, an iterative process takes place between the 
ADC outputs, the fetched data trace, and the control unit. The write-
verify module compares the ADC outputs to the configured thresholds. 
If the ADC outputs fall below the threshold for the target conductance 
state, it indicates that the device has not yet transitioned to the target 
state. In this case, the control unit generates the next Vwrite with 
the incremental amplitude. The device model retrieves the next data 
point from the fetched data trace, which continues the verification. 
Conversely, if the ADC outputs exceed the threshold, it signifies that 
the device has successfully transitioned to the target state. The control 
unit then terminates the programming sequence for that device and 
proceeds to the next one. This interactive interplay ensures that the 
write-verify algorithm adapts the programming pulse sequence based 
on the real-time behavior of the emulated device, incorporating the 
inherent variability. For VMM operations, the write-verify algorithm 
is not employed. Instead, the digitized accumulation results are stored 
directly in the output BRAM and can be accessed via the implemented 
program.

The trace-based energy consumption for each operation is esti-
mated using the modified NeuroSim framework [22], with technology-
dependent parameters calibrated to the IHP 130 nm process design 
kit (PDK). Upon completion of an emulated operation, the framework 
receives some relevant dynamic metrics dumped from the emulator 
during that operation. For example, pulse counts and Iread after each 
pulse from the programming phase are used to estimate programming 
energy, while input vectors and stored conductance values contribute 
to the energy consumption estimation for VMMs.

In summary, our FPGA-based RRAM crossbar emulator, RRAMula-
tor, with its cycle-accurate emulation of RRAM crossbar behavior, in-
corporates a modified NeuroSim framework to estimate trace-based en-
ergy consumption. We provide a comprehensive platform for evaluating 
the energy efficiency and overall performance of RRAM-based systems, 
accounting for device variability and programming algorithms.

4. Evaluation

To evaluate the proposed RRAMulator framework, we conducted 
a series of experiments focusing on two key aspects: emulation speed 
compared to traditional CPU-based behavioral simulations, and energy 
analysis of an RRAM-based DFT accelerator. RRAMulator is developed 
in Verilog and implemented on a Xilinx ZCU102 evaluation board using 
the Vivado Design Suite. It features configurable parameters to enhance 
adaptability. In the experiments, pulse widths for Vwrite and Vread are 
set to 1 μs and 100 ns, respectively, aligning the 10 MHz system clock 
with the Vread pulse width. The Vwrite pulse width is chosen to match 
the device measurements with ISPVA [13].

To evaluate the emulation speed and highlight the advantages of 
RRAMulator, we map the designs with various crossbar sizes onto the 
FPGA, systematically increasing the scale to assess performance under 
different workloads. For each crossbar configuration, the input matrices 
consisting of 2-bit values are randomly generated with an equal distri-
bution of states. We measure the time required to complete a set of 
representative operations, including programming the whole crossbar 
followed by 1000 times of VMMs. To quantify the speedup achieved by 
RRAMulator, we compare the emulation time against the corresponding 
simulation time obtained by running the same Verilog design on a con-
ventional CPU using the Vivado simulator. This comparative analysis 
demonstrates the effectiveness of RRAMulator in accelerating RRAM 
system simulations.

A primary goal of RRAMulator is to achieve real-time emulation, 
where the emulation speed precisely matches real-world timing. In our 
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Fig. 9. Comparison between the behavioral simulation and emulation time for various 
sizes of crossbar arrays in logarithmic scale. The evaluation involves mapping a matrix 
containing 2-bit values to a crossbar followed by 1000 times VMM operations [20].

case, the timing parameters for ISPVA are specifically adopted, as all 
device characterizations are obtained based on this algorithm. This is 
crucial for accurately interfacing with external high-performance plat-
forms like RISC-V processors, which operate on real-world timescales. 
While the clock frequency of RRAMulator can be increased to accelerate 
the simulation, doing so would result in a design speed faster than real 
time, causing synchronization issues and mismatches with the external 
platform. Conversely, a slower emulation speed can introduce delays 
and bottlenecks in the overall system. Therefore, maintaining real-time 
emulation is essential for seamless integration and accurate interaction 
with external platforms.

The results in Fig.  9 show a significant speedup achieved by the 
RRAMulator compared to conventional CPU-based behavioral simula-
tions. This speedup is particularly pronounced for larger crossbar sizes, 
highlighting the emulator’s ability to efficiently handle the increasing 
complexity and parallelism inherent in such systems. The fact that 
CPU-based simulations are far from real time further emphasizes the 
advantage of the FPGA platform, which leverages its high parallelism 
to achieve fast emulation.

Furthermore, the inclusion of device-to-device variability in the 
model incurs minimal overhead, as evidenced by the marginal differ-
ence in simulation time between scenarios with and without the con-
sideration of variability. This efficient variability modeling approach, 
coupled with the LUT-based device model, enables real-time emulation 
while accurately capturing the impact of device variations on system 
behavior.

Regarding resource utilization, the 128 × 128 RRAM crossbar array, 
including peripheral circuitry, consumes approximately 10% of the 
available LUTs, 7% of the BRAM, and 4% of the flip-flops on the 
Xilinx ZCU102 board. This demonstrates the model’s potential for scal-
ability to larger crossbar sizes while maintaining reasonable resource 
consumption.

In summary, the proposed FPGA-based emulator serves as a highly 
flexible and efficient platform for emulating RRAM-based systems, 
offering real-time performance that is not achievable with CPU-based 
simulations. Unlike application-specific integrated circuit (ASIC) im-
plementations, which are optimized for speed and power efficiency 
in final applications, the FPGA emulator is designed to support rapid 
prototyping and system-level evaluation during the development phase. 
Compared to other emulation platforms, such as CPU and GPU-based 
frameworks, the FPGA implementation achieves significantly lower 
latency and allows hardware-in-the-loop co-simulations, making it par-
ticularly suited for cycle-accurate evaluations of device and system 
behaviors. 

5. Case study

To showcase the capabilities of our proposed RRAMulator frame-
work, we simulate an RRAM-based DFT accelerator. DFT is a fundamen-
tal algorithm in signal processing, image compression, and telecommu-
nications, converting time-domain signals into their frequency-domain 
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Fig. 10. Computing DFT with RRAM crossbars. Real and imaginary parts of twiddle 
factors are mapped as device conductance onto separate crossbars.

Fig. 11. (a) Comparison of normalized energy consumption for programming twiddle 
factors onto RRAM crossbars versus performing computations with different bitwidths 
for 128-point DFT. (b) PSNR of DFT computation results as a function of twiddle factor 
bitwidth.

representations. This transformation is achieved through VMMs be-
tween input symbols and a matrix of complex-valued twiddle factors, 
which can be expressed as: 
𝐗 = 𝐖𝐱. (1)

Leveraging the inherent parallelism and energy efficiency of RRAM 
crossbars, the DFT can be performed in the analog domain by mapping 
the twiddle factors onto the crossbar as device conductance values. To 
accommodate the complex nature of twiddle factors, which comprise 
real and imaginary components, separate computations are conducted 
for each part.

Fig.  10 details the system architecture of the RRAM-based DFT 
accelerator, and it should be noted that only the computation of the real 
part of X is depicted. Signed computations are achieved by mapping 
twiddle factors as conductance difference between two crossbars [6]. 
To meet the resolution requirements of DFT computations, each twiddle 
factor is mapped to a cluster of devices, and bit significance is recovered 
through shift-and-add operations on the digitized outputs [35].

To evaluate energy consumption and computational accuracy, we 
simulate a 128-point DFT using RRAM crossbars with augmented de-
vice data to account for device-to-device variability. Twiddle factors are 
mapped to RRAM devices with 2-bit resolution using ISPVA and 8-bit 
ADCs for readout. The inputs are encoded as binary numbers with 6-bit 
resolution.

Fig.  11(a) demonstrates the energy consumption for programming 
twiddle factors onto the crossbars and computations relative to the 
bitwidth of coefficients. The results are normalized to the energy con-
sumed at a minimal bitwidth of two, namely, each signed twiddle factor 
mapped to a differential device pair. It can be noticed that a significant 
gap exists between programming and computational energy. At the 
minimum bitwidth, programming consumes approximately 325 times 
more energy than computation. This disparity increases with bitwidth, 
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reaching a factor of 618 at a bitwidth of eight. The results highlight 
the importance of minimizing frequent device reprogramming to avoid 
the high energy cost associated with this process. To mitigate the 
impact of high programming energy, it is essential to perform a large 
number of computations per programming cycle. This amortizes the 
programming cost over multiple computations, enhancing the overall 
energy efficiency of RRAM-based DFT accelerators. Leveraging the 
non-volatility of RRAM devices, twiddle factors can be retained after 
power-off. However, protecting devices against dynamic effects such 
as read disturb and temperature dependency is crucial, as these non-
ideal effects can distort stored values and necessitate energy-intensive 
reprogramming for data recovery.

To assess the computational accuracy of the system and the impact 
of device variability, we utilize the peak signal-to-noise ratio (PSNR) 
metric. PSNR is a widely used measure in signal processing that quanti-
fies the quality of signals by comparing the maximum possible power of 
a signal to the power of corrupting noise. In our evaluation, we compute 
the PSNR of the signal processed by the RRAM-based DFT accelerator 
against a reference signal obtained from an ideal DFT implementation. 
This allows us to quantify the degree of signal degradation introduced 
by the RRAM device’s inherent variability and the approximation errors 
in the analog computation. A higher PSNR value indicates better signal 
quality and closer agreement with the ideal DFT output. The PSNR can 
be computed as: 

PSNR = 10 log10

(

MAX2
MSE

)

, (2)

where MAX is the maximum value of the signal and MSE is the mean 
squared error between the RRAM-based DFT outputs and the reference.

Fig.  11(b) presents the PSNR of the RRAM-based DFT accelerator 
for various twiddle factor resolutions, both with and without consid-
ering device-to-device variability. Each configuration contains 1000 
experiments with randomly generated input signals containing complex 
numbers. The results reveal a substantial margin between the PSNR 
with and without variability, indicating that device variability sig-
nificantly impacts computational accuracy. Ignoring device-to-device 
variability in simulations may lead to overly optimistic accuracy es-
timates. Furthermore, the PSNR initially increases with higher twiddle 
factor resolutions in both scenarios but eventually plateaus, showing 
that beyond a certain resolution, factors such as ADC precision and 
input data resolution become the primary limitations to computational 
accuracy. The gap between the two curves suggests potential for further 
improvement in the accuracy of RRAM-based DFT accelerators by de-
veloping reliable mapping techniques to mitigate the impact of device 
variability, such as the variability-aware progressive device mapping 
scheme proposed in [9].

6. Conclusion

In this work, we present RRAMulator, an efficient FPGA-based 
emulation platform for RRAM-based IMC systems. To improve system 
performance, we employ a lightweight LUT-based device model that 
avoids the complexity of traditional device models in system-level 
simulations. We enhance this approach with a data-driven variability 
modeling technique based on multivariate KDE, which leverages de-
vice measurements to expand the available data and accurately model 
device-to-device variations. By combining these two approaches, we 
achieve real-time emulation of RRAM crossbars, enabling co-simulation 
with other designs for seamless integration. Furthermore, we imple-
ment the RRAM crossbar array with behavioral models of peripheral 
circuitry on the FPGA, accurately reflecting the behavior and latency of 
the system. We integrate the NeuroSim framework to estimate energy 
consumption based on traces generated during emulation, providing a 
comprehensive assessment of system efficiency. Our implementation 
on an FPGA demonstrates a significant speedup factor up to 2510 
times compared to CPU-based simulations for a 128 × 128 crossbar, 
9

while maintaining low hardware resource utilization. The RRAM-based 
DFT simulation conducted on RRAMulator reveals insights into energy 
efficiency and computational accuracy, showcasing the platform’s po-
tential for deep analysis of the systems. Overall, RRAMulator offers 
an efficient and comprehensive framework for modeling and evalu-
ating RRAM-based IMC systems, accelerating the system design space 
exploration and development.
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