
Microelectronics Reliability 168 (2025) 115630

A
0

Contents lists available at ScienceDirect

Microelectronics Reliability

journal homepage: www.elsevier.com/locate/microrel

Research paper

RRAMulator: An efficient FPGA-based emulator for RRAM crossbar with

device variability and energy consumption evaluation
Jianan Wen a ,∗, Fabian Luis Vargas a , Fukun Zhu a, Daniel Reiser b , Andrea Baroni a ,
Markus Fritscher a,c , Eduardo Perez a,c , Marc Reichenbach b , Christian Wenger a,c ,
Milos Krstic a,d
a IHP - Leibniz-Institut für innovative Mikroelektronik, Frankfurt (Oder), Germany
b University of Rostock, Rostock, Germany
c Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
d University of Potsdam, Potsdam, Germany

A R T I C L E I N F O

Keywords:
Resistive RAM
FPGA
Hardware Emulation
RRAM Crossbar
In-Memory Computing
Reliability

 A B S T R A C T

The in-memory computing (IMC) systems based on emerging technologies have gained significant attention
due to their potential to enhance performance and energy efficiency by minimizing data movement between
memory and processing unit, which is especially beneficial for data-intensive applications. Designing and
evaluating systems utilizing emerging memory technologies, such as resistive RAM (RRAM), poses considerable
challenges due to the limited support from electronics design automation (EDA) tools for rapid development
and design space exploration. Additionally, incorporating technology-dependent variability into system-level
simulations is critical to accurately assess the impact on system reliability and performance. To bridge this
gap, we propose RRAMulator, a field-programmable gate array (FPGA) based hardware emulator for RRAM
crossbar array. To avoid the complex device models capturing the nonlinear current–voltage (IV) relationships
that degrade emulation speed and increase hardware utilization, we propose a device and variability modeling
approach based on device measurements. We deploy look-up tables (LUTs) for device modeling and use
the multivariate kernel density estimation (KDE) method to augment existing data, extending data variety
and avoiding repetitive data usage. The proposed emulator achieves cycle-accurate, real-time emulations
and provides information such as latency and energy consumption for matrix mapping and vector–matrix
multiplications (VMMs). Experimental results show a significant reduction in emulation time compared to
conventional behavioral simulations. Additionally, an RRAM-based discrete Fourier transform (DFT) accelerator
is analyzed as a case study featuring a range of in-depth system assessments.
1. Introduction

As technology advances and the demand for faster and more energy-
efficient computing grows, the development of computational systems
encounters significant challenges, particularly the memory-wall prob-
lem inherent in the conventional von Neumann architecture. The data
movement between processing unit and memory becomes the main bot-
tleneck limiting the system performance and energy efficiency [1]. This
issue becomes critical today because modern applications, especially for
artificial intelligence (AI) and other data-intensive computing, require
massive amounts of data to be processed quickly and efficiently.

To address this issue, in-memory computing (IMC) systems are
proposed as a promising computing paradigm. Unlike traditional com-
puting architectures that rely on the constant data movement between

∗ Corresponding author.
E-mail address: wen@ihp-microelectronics.com (J. Wen).

memory and processing units, IMC directly embeds the computations
within the memory itself, which significantly reduces the costly data
transfer overhead [2].

Resistive RAM (RRAM) is an emerging memory technology that
offers several benefits including high storage density, low energy con-
sumption, multilevel storage, and rapid read operations [3]. Addition-
ally, as a non-volatile memory (NVM), RRAM retains data without
requiring a power supply, enhancing overall system efficiency. Due to
the CMOS compatibility, the RRAM devices can be tightly integrated
with the peripheral circuitry for write and read operations, resulting in
promising read energy efficiency and latency [4].

In addition to the usage as memory for data storage, RRAM devices
can be configured as crossbar arrays to implement IMC archietcures for
vailable online 12 March 2025
026-2714/© 2025 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.microrel.2025.115630
Received 21 July 2024; Received in revised form 27 January 2025; Accepted 19 Fe
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

bruary 2025

https://www.elsevier.com/locate/microrel
https://www.elsevier.com/locate/microrel
https://orcid.org/0009-0003-7733-8907
https://orcid.org/0000-0002-3871-6464
https://orcid.org/0000-0003-0212-259X
https://orcid.org/0000-0002-5205-0398
https://orcid.org/0000-0003-2754-7287
https://orcid.org/0000-0001-7545-9420
https://orcid.org/0000-0002-9687-6247
https://orcid.org/0000-0003-3698-2635
https://orcid.org/0000-0003-0267-0203
mailto:wen@ihp-microelectronics.com
https://doi.org/10.1016/j.microrel.2025.115630
https://doi.org/10.1016/j.microrel.2025.115630
http://creativecommons.org/licenses/by/4.0/

Microelectronics Reliability 168 (2025) 115630J. Wen et al.
computing vector-matrix multiplications (VMMs). The matrix elements
are stored in the RRAM crossbars as device conductance, while the
vectors are encoded as input voltages applied on the crossbars. This ar-
chitecture allows the VMMs to be performed in the analog domain with
high parallelism and minimized data movements, which contributes
to achieving highly efficient computations [5]. As a result, RRAM
crossbars are highly attractive for implementing systems that require
massive VMMs, such as hardware accelerators for artificial neural
networks (ANNs) [6,7], homomorphic encryption (HE) [8], and Fourier
transform [9]. A comprehensive review of hardware accelerators based
on emerging technologies can be found in [10].

Although the RRAM technology exhibits promising potential, the
corresponding design flow is not yet mature enough to enable rapid
prototyping for holistic design space exploration [11]. One of the key
challenges is developing device models that precisely capture device
dynamics for simulations under various stimuli to accurately predict
system behavior and evaluate hardware overhead [12]. Meanwhile,
the device models need to be compact to ensure acceptable simulation
time, especially as systems scale up to include millions of devices
processing information in parallel to handle complex computational
tasks [7].

The switching mechanism of RRAM devices relies on the growth and
rapture of conductive filaments (CFs) in the oxide layer. The inherent
stochastic nature leads to variability both between different devices and
across multiple switching cycles, which are known as device-to-device
and cycle-to-cycle variability, respectively [13]. Besides, some other
non-ideal effects can affect the system reliability, such as conductance
drift [14], read disturb [15], conductance fluctuation [16], and tem-
perature dependency [17]. These non-ideal effects pose challenges in
ensuring consistent performance and reliability across different devices
and operating conditions. Furthermore, immature fabrication process
can introduce defects that cause devices to become stuck in specific
resistance states, leading to system malfunctions [18]. Therefore, it is
crucial to model and manage these non-ideal effects throughout the
hardware life cycle, starting from the system design stage [19].

To enable rapid simulations and expedite the iterative design op-
timizations, we introduced a field-programmable gate array (FPGA)
based emulator for the RRAM crossbar array including peripheral cir-
cuitry in [20]. The emulator leverages a system-level behavioral model
of the RRAM crossbar array described at the register-transfer level
(RTL) [21]. This approach offers significant advantages over traditional
central processing unit (CPU) based simulations. The contributions
in [20] can be summarized as:

1. Hardware Acceleration: The RRAM crossbar model including
peripheral circuitry is implemented on the FPGA platform, which
outperforms the CPU-based behavioral simulations and achieves
real-time emulations.

2. Data-driven Variability Modeling: A novel data-driven vari-
ability modeling approach based on multivariate kernel density
estimation (KDE) is proposed. This approach effectively aug-
ments existing measurement data, extending data variety and
allowing for the emulation of large-scale systems without data
point reuse or additional experiments.

3. Emulating Mapping and VMMs: Leveraging the augmented
data that models variability and incorporating modules like the
write-verify algorithm, our platform can emulate system behav-
iors with variability for matrix mapping and VMM operations.
This enhanced capability allows for more insightful analysis of
system performance under realistic variability conditions.

4. Energy Consumption Evaluation: To assess the emulated hard-
ware’s efficiency, the emulator is interfaced with the NeuroSim
framework [22]. This integration features the estimation of en-
ergy consumption for different operations.

In this paper, we extend our previous work in [20] with the follow-
ing aspects:
2

1. Expanded Device Characterization: To rigorously validate the
efficacy of the proposed data-driven augmentation approach for
modeling device-to-device variability, the experimental dataset
is substantially expanded. The number of characterized devices
is increased from 256 to 4096, encompassing the entire memory
array. This comprehensive characterization ensures a more accu-
rate representation of the inherent variability within the device
population.

2. RRAM-based DFT Case Study: A thorough analysis is conducted
on an RRAM-based discrete Fourier transform (DFT) accelera-
tor to investigate the trade-off between computational accuracy
and energy consumption. This case study serves as a practical
demonstration of the emulator’s capability to assess system-level
performance under realistic device variability conditions.

The reminder of this paper is organized as follows: Section 2 pro-
vides an overview of related works focusing on FPGA emulation for
emerging technologies. Section 3 details the methodologies employed
in this work, including LUT-based device modeling, data-driven vari-
ability modeling, and the architecture of the proposed hardware emu-
lation platform. Section 4 presents a comprehensive evaluation of the
FPGA emulator, and Section 5 introduces a case study demonstrat-
ing its efficacy. Finally, Section 6 summarizes the key findings and
contributions of this work.

2. Related works

One of the challenges in simulating large-scale RRAM-based systems
is the incorporation of complex device models that capture the inherent
non-linear current–voltage (IV) characteristics and switching dynamics
of individual devices. For instance, in certain models, the evolution
of device conductance during resistive switching is attributed to the
modulation of the gap between the CF and bottom electrode (BE)
in the oxide layer, a process described by computationally intensive
differential and hyperbolic equations [12]. This complexity is further
compounded when considering large-scale systems with numerous de-
vices operating in parallel, as the computational demands increase
significantly. Additionally, incorporating device-to-device variability
into the simulation model introduces another layer of complexity,
further exacerbating the computational burden and simulation time.

FPGAs offer a promising platform for device-aware simulations of
RRAM systems, effectively addressing the extensive computational de-
mands posed by the inherent complex device and variability modeling.
This enables efficient emulation of system behaviors, accelerating the
development and optimization of RRAM-based systems. Leveraging
their highly parallel processing capabilities, FPGAs facilitate high-speed
emulation, overcoming the speed and scalability limitations often en-
countered in software-based simulations. This high-speed emulation
becomes essential for large-scale RRAM systems. It also enables inte-
grating the RRAM systems into multi-core processors like RISC-V as
hardware accelerators [29] and co-simulations in real time. Moreover,
their reconfigurability and flexibility make FPGAs well-suited for rapid
prototyping and extensive design space exploration in the early stage
of system development.

Several studies utilized FPGA emulators to accelerate simulations
of systems based on emerging memory technologies, as summarized in
Table 1. Ntinas et al. [23] implemented a 1D RRAM crossbar on FPGA,
using a behavioral model of bipolar RRAM devices to emulate vector-
vector multiplications in a single-layer ANN. This approach captured
timing information crucial for cycle-accurate simulations, accurately re-
flecting device behavior at each time step. In contrast, Tolba et al. [24]
emulated an RRAM-based multi-bit XNOR gate as the fundamental
building block for an ANN, employing a simplified device model with
five discrete conductance levels. While not explicitly mentioned, the
omission of timing information in their model may have implications
for achieving cycle-accurate simulations. Both studies [23,24] imple-
mented pinched hysteresis loops for voltage-controlled resistance in

Microelectronics Reliability 168 (2025) 115630J. Wen et al.
Table 1
Comparison of the proposed work against state-of-the-art methods.

Work [23] [24] [25] [26] [27] [28] This work
Topology 1D Crossbar XNOR Crossbar Crossbar Register Cache Crossbar
Application IMC IMC IMC IMC Storage Storage IMC

Scale Small Small Large Large Large Large Large
Cycle-accurate ✓ N × × ✓ ✓ ✓

Device Programming ✓ × × × ✓ ✓ ✓

Device Variability × × ✓ ✓ × × ✓

Fault Injection × × ✓ ✓ × × ×
Energy Evaluation × × × × ✓(Only dev.) × ✓

✓: Supported, ×: Not Supported, N: Not Given.
RRAM devices and compared hardware simulation results with the
mathematical device models. However, a notable limitation in both
works is the absence of device variability considerations, hindering
insights into the impact of variability on system reliability.

Luo et al. [25] presented an emulator implemented on the FPGA
platform for RRAM-based spiking neural networks (SNNs). Their design
includes controllers and crossbar interconnections, facilitating compre-
hensive system-level evaluations. The authors explored the impact of
network-on-chip (NoC) configurations on system performance through
various core mapping schemes and buffer depths. Additionally, the
integration of a noise generator enabled the study of hardware vulnera-
bility to variability and stuck-at faults. However, this design prioritized
scalability over cycle-level accuracy by serializing result accumulations
within the crossbars. In [26], a FPGA-based emulation framework for
RRAM-based ANNs was reported. This work offloaded massive VMMs
in the crossbars to onboard multiply-and-accumulate (MAC) tree units
for high parallelism. A runtime software stack with instructions and
scheduling was implemented for flexible emulation of various ANN
models. Variability and defects were injected by preprocessing weights
streamed into MAC units. Both emulators [25,26] scarified the cycle-
accurate emulation to achieve high performance and scalability. They
focused on the inference phase to evaluate accuracy under device vari-
ations and faults, and the device programming process was simplified
as standard memory write operations. Furthermore, none of the dis-
cussed works [23–26] considered energy efficiency, which is a crucial
evaluation criterion for emerging technology-based IMC systems.

Beyond IMC systems, FPGA emulation has also been applied to
systems utilizing emerging technologies as NVMs. Ruffini et al. [27]
demonstrated an FPGA-based framework for NVM-based energy-
harvesting intermittent computing systems, incorporating intentional
delays in the read/write process to simulate latency for various oper-
ations. The authors implemented and tested different backup policies
and compared the energy efficiency. However, their analysis focused
solely on the energy consumption of the NVM devices themselves,
neglecting the peripheral circuitry required to drive and interface with
the devices. Zhao et al. [28] presented an FPGA-based framework for
emulating various emerging NVM technologies as L1 data caches within
a RISC-V processor environment. They evaluated the performance
impact of different NVM configurations using benchmark applications,
demonstrating the framework’s capability to assess the performance of
emerging memory technologies in realistic processor settings. Similar
to [27], the device variations are not taken into account, which may
impact the performance and reliability of the systems based on NVMs.

It is evident that existing emulators targeting large-scale IMC sys-
tems with emerging devices do not support cycle-accurate emulations,
limiting detailed timing analysis. Furthermore, the device programming
process, crucial in edge learning systems where frequent retraining
and weight updates occur [30], is not adequately emulated in existing
platforms. To validate and assess accelerators in realistic environ-
ments, integrating the system into a larger platform for simulation
is necessary [28]. In such scenarios, real-time, cycle-accurate emula-
tion becomes essential, enabling co-simulation with architectures like
RISC-V for comprehensive system-level evaluations [29].

To address these gaps, we propose RRAMulator, an FPGA-based
RRAM crossbar emulator. RRAMulator employs efficient device and
3

variability modeling approaches, accurately capturing device behavior
in large-scale systems without compromising emulation speed. Device
variability is considered for programming and VMM operations with
RRAM crossbars. By implementing behavioral models of peripheral
circuitry and the write-verify algorithm interfacing with crossbars,
RRAMulator can emulate the entire system’s behavior under various
scenarios. Additionally, energy efficiency, a key advantage of emerging
technology-based IMC systems, is evaluated by feeding traces generated
by emulator into NeuroSim framework [22]. Therefore, RRAMulator
can emulate the system behaviors in a cycle-accurate manner, and eval-
uate the performance and energy efficiency under device variations.
Notably, the proposed methodologies are not limited to RRAM-based
systems and can be extended to other emerging technologies.

3. Methodology

3.1. LUT-based device modeling

Accurate device models are crucial for understanding the behavior
and performance of emerging memory technologies like RRAM and
guiding device engineering efforts. However, it is important to recog-
nize a key distinction between device-level and system-level simula-
tions. Device-level simulations focus on the intricate physical processes
within individual devices, often requiring detailed models that cap-
ture the underlying physics. In contrast, system-level simulations aim
to evaluate the performance of the entire memory system, including
interactions between numerous devices and peripheral circuitry.

While detailed device models are essential for understanding device-
level behavior, they can be computationally expensive and may not
be strictly necessary for system-level simulations. System-level sim-
ulations prioritize capturing the essential device characteristics that
significantly impact overall simulation speed. Therefore, deploying de-
vice models for system-level simulations needs to compromise between
accuracy and computational complexity.

To minimize the computational overhead of device models and
improve system simulation speed, we employ a look-up table (LUT)
based approach [21]. This method focuses on capturing the essential IV
relationship of the device, bypassing the need to solve complex equa-
tions that reflect device dynamics [12]. Similarly, another LUT-based
device model is utilized in [31] to accelerate the analog simulations of
the RRAM-based systems.

We demonstrate the efficacy of our proposed approaches using
one-transistor-one-resistor (1T1R) RRAM devices manufactured at IHP
with 130 nm SiGe BiCMOS technology. A memory chip containing
64 × 64 1T1R devices is characterized to collect data, which is sub-
sequently used for analysis and evaluation of the proposed methods.
This specific device serves as a representative example to showcase the
adaptability of our modeling approaches across different device types
and programming techniques.

Fig. 1 presents the schematic and corresponding transmission elec-
tron microscopy (TEM) image of an IHP 1T1R device. The metal–
insulator–metal (MIM) stack, comprised of TiN/HfO2/Ti/TiN, is mono-
lithically fabricated with conventional CMOS in the back-end-of-line
(BEOL) process. As a memory, information can be encoded as device
conductance by applying voltages to the device terminals. Positive

Microelectronics Reliability 168 (2025) 115630J. Wen et al.
Fig. 1. Cross-sectional TEM image (left) [12] and schematic (center) of the 1T1R de-
vice. Resistive switching process with the change of CFs in the oxide layer (right) [20].

Fig. 2. Waveform of the ISPVA. Each write pulse with Vwrite is followed by a read
pulse with Vread to check if the read out current reaches the predefined target with Ith.
If not, a subsequent write pulse with the incremental amplitude is applied [13].

voltages between the bitline (BL) and sourceline (SL) switch the device
from high resistance state (HRS) to low resistance state (LRS), while
inverse polarity pulses reverse this transition. These processes are de-
noted as SET and RESET, respectively. The resistive switching behavior
observed in RRAM devices is widely attributed to the formation and
rupture of CFs within the oxide layer [12] , as depicted in Fig. 1. The
NMOS transistor in the 1T1R device functions as a selector, enabling
individual device access within a crossbar array and eliminating sneak
path currents. Some device models describe the change of conductance
during SET and RESET operations as a complex function of the gap
between the CF and BE in the oxide layer, often involving differential
and hyperbolic equations [12]. This complexity hinders their use in
large-scale system simulations. Our LUT-based approach addresses this
issue by capturing essential device behavior without the need for
computationally expensive calculations.

To precisely control device conductance during programming and
mitigate device-to-device variability, write-verify algorithms are com-
monly employed using pulse trains [7,13,32]. These write-verify al-
gorithms consist of alternating write pulses and low-amplitude read
pulses. The read pulse verifies whether the target conductance level
has been achieved without disturbing the stored information. The
write-verify algorithm should be implemented in the emulator as it
directly impacts data fidelity and write latency. Accurately modeling
this process ensures simulated behavior aligns with actual hardware,
enabling effective algorithm evaluation and parameter optimization to
achieve the optimal programming accuracy and speed. Additionally, it
allows for a more realistic assessment of overall system performance
and energy consumption, which are influenced by the write process.

In this work, we integrate the incremental step pulse with verify
algorithm (ISPVA) into our emulator to achieve reliable multilevel
storage [13]. Fig. 2 illustrates the voltage waveform deployed in this
approach. After each write pulse with the amplitude of Vwrite to alter
the device conductance, a read pulse with Vread is applied to determine
if the output current reaches the predefined threshold (Ith). If not,
another write pulse with higher amplitude is applied, incrementally
increasing in fixed steps until Ith is reached, indicating the completion
of programming for the selected device.

During the SET operation, modulating the NMOS’s gate voltage (Vg)
applied to wordline (WL) controls compliance current flowing through
4

Fig. 3. The measured evolution of Iread from HRS to three different LRSs. The current
values are averaged over 4096 1T1R devices. Iread are measured at a voltage of
Vread = 0.2 V.

Fig. 4. Architecture of the LUT-based device modeling approach with write and read
operations.

the MIM stack, enabling transitions from HRS to various LRSs [13].
Reliable multilevel storage is realized by identifying appropriate pairs
of {Vg, Ith} for each resistance state based on device characterization.
Fig. 3 shows the evolution of the mean readout currents (Iread) mea-
sured at a read voltage (Vread) of 0.2 V across 4096 devices, fabricated
in a 1T1R memory array. The devices are programmed with ISPVA with
an incremental voltage step of 0.1 V. The measured data demonstrates
reliable storage of four distinct resistance states: one HRS and three
LRSs.

To efficiently model large-scale systems with numerous devices op-
erating in parallel, we employ a LUT-based device modeling approach.
This method prioritizes modeling speed by focusing solely on the
critical information for system-level simulations: the IV relationship.
Instead of capturing detailed information like conductance changes
resulting from voltage-induced variations in CF dimensions [12], the
LUT-based approach provides a streamlined representation of device
behavior.

The architecture of the LUT-based model, depicted in Fig. 4, com-
prises three LUTs, a buffer for each device, and two multiplexers. The
LUTs store pre-generated IV relationship values for each LRS transiting
from HRS. During write operations, the LUTs are swept to find the
matched output currents corresponding to the input voltage (Vwrite) for
each LRS. The matched output current for the target state is selected
based on the simultaneously applied Vg on the WL and stored in
the buffer. For the FPGA implementation, the buffers can be realized
with block RAMs (BRAMs), and LUTs can be shared among devices in
crossbar arrays for efficiency. During read operations, if both Vread and
Vg for the device are applied concurrently, indicating device is selected,
the output current (Iread) is presented. Otherwise, the output remains
zero. During VMMs operations, multiple devices sharing the same SL
are selected simultaneously, and their outputs are accumulated.

The LUT-based modeling approach offers a lightweight, efficient
method for device modeling, significantly accelerating system-level
simulations. It captures device dynamics after each applied pulse, with
model accuracy directly tied to the stored LUT values. This approach
is highly flexible, allowing for the utilization of data samples gen-
erated from device-level models or directly measured experimental

Microelectronics Reliability 168 (2025) 115630J. Wen et al.
Fig. 5. Device-to-device variability in RRAM programming. (a) Evolution of Iread for 4095 devices programmed to LRS3 using ISPVA. (b) Distribution of programming pulse
counts, influencing latency and energy consumption for device programming. (c) Distribution of Iread at the end of programming, impacting accuracy of the stored information and
computations.
results. Furthermore, system-level variability and fault injection can
be readily implemented by modifying the LUT values. By populating
the LUTs with data from various emerging memory technologies and
the corresponding writing algorithms, the system-level behavior can be
investigated across a broad collections of device characteristics. This
enables users to evaluate the performance implications of integrating
different memory technologies into their systems.

While this model is limited to representing device behavior under
the specific conditions of the simulation or measurement campaign
used to generate the LUTs, this limitation can be mitigated by gen-
erating LUTs for a wide range of operating conditions or by employ-
ing adaptive techniques to update LUTs during simulation based on
observed device behavior.

3.2. Device variability modeling

Device-to-device variability in RRAM technology arises from a com-
bination of factors. Fluctuations in the oxide layer’s thickness and com-
position during fabrication contribute to the observed differences in
device behavior [33]. Additionally, during programming, the stochastic
nature of CF formation leads to variations in their size and shape.
Variability can significantly degrade the accuracy of stored information
and computational results in RRAM-based systems. Device-to-device
variability not only affects accuracy but also contributes to variations in
the number of pulses required for state transitions, impacting program-
ming latency and energy consumption. Therefore, incorporating this
characteristic into system-level simulations is crucial for quantifying its
impact and developing effective mitigation strategies. It is also neces-
sary to accurately capture this information in system-level emulators
without introducing significant computational overhead.

Fig. 5(a) illustrates the measured currents of devices programmed
from HRS to LRS3, which is the LRS with the highest conductance.
During programming, multilevel storage and variability reduction are
achieved through the use of ISPVA.

All devices are initially subjected to a write voltage of 0.5 V. A read
pulse of 0.2 V is then applied to each device, and the resulting read
current is compared to a threshold current, which is 32 μA for LRS3.
Devices that remain unswitched receive subsequent write pulses with
incrementally increased amplitude of 0.1 V, each followed by a read
pulse. For devices that have already switched, only the read pulse is
applied to record their conductance. In summary, during programming,
write pulses are applied exclusively to devices that have not yet reached
the target state, while read pulses are applied to the entire array. The
programming phase concludes once all devices achieve the threshold
current. Note that one device failed to switch despite increased write
pulses, hence only 4095 devices are shown in the plot.

During programming, two types of variability are relevant to system
performance and reliability:
5

1. Variability in Write Pulse Count: The number of write pulses
required to reach the target conductance level varies signifi-
cantly across devices. As shown in Fig. 5(b), while most de-
vices reach LRS3 within six to ten pulses, a subset exhibits tail
distribution behavior, requiring upwards of 12 pulses. Ignor-
ing or simplifying this tail distribution can lead to inaccurate
system-level models and unrealistic performance predictions.

2. Variability in Read Currents: The variability in read currents
after switching, as illustrated in Fig. 5(c), directly impacts stored
information and computational accuracy. Overlapping read cur-
rent distributions between different resistance states can intro-
duce ambiguity and errors in data interpretation, potentially
leading to incorrect computational results.

To accurately model device behavior and integrate it into system-
level simulations with cycle accuracy, it is essential to simultaneously
capture the two correlated device-to-device variability observed during
programming. These variations impact both the latency and energy
consumption to program devices in crossbars, as well as computational
accuracy. The objective is to reproduce device behaviors illustrated
in Fig. 5(a) while preserving the distributions of programming pulse
counts and readout currents shown in (b) and (c).

While some device models incorporate simulations of device vari-
ability, incorporating such detailed models into system-level simula-
tions often proves impractical due to scalability limitations and high
computational costs. To overcome these challenges, data-driven ap-
proaches that leverage measured device data emerge as a more efficient
alternative. One such approach, known as oversampling, involves ran-
domly selecting devices from the existing measured dataset until the
desired population size for the simulation is reached [15]. However,
this method has limitations: when the target population exceeds the
original dataset size, data points must be reused, preventing extrapola-
tion beyond the measured data and limiting sample diversity. Another
approach is fitting probability density functions (PDFs) to measured
data for each write pulse, then generating new data samples for simu-
lation [29]. It expands the data volume without directly reusing raw
data. However, this approach also presents several challenges: first,
fitting complex distributions observed in real devices to known PDFs
might not always be feasible, and some approximations are required.
Second, generating massive new data samples on-the-fly during runtime
can be computationally intensive. Most importantly, the correlation
between the two variability types may not be preserved since data
generation for each device after each pulse is performed indepen-
dently. This lack of captured correlation can lead to inaccurate system
behavior representation, potentially yielding inaccurate performance
predictions.

To overcome the limitations of the aforementioned data-driven
approaches, we propose leveraging multivariate KDE method to extend
the available data based on device measurements for variability mod-
eling. Multivariate KDE, a non-parametric statistical method, estimates

Microelectronics Reliability 168 (2025) 115630J. Wen et al.
Fig. 6. The augmented data for RRAM device programming based on measured data. (a) The evolution of augmented Iread for 4095 devices programmed to LRS3. (b) Comparison of
the number of pulses required to program devices across augmented and raw data. (c) Comparison of raw and augmented data distributions for final Iread values after programming.
Fig. 7. The correlation between the number of write pulses and read currents for the
raw and augmented data.

the PDF of multidimensional data without assuming the underlying
parametric distribution [34]. Unlike oversampling, which relies on the
repetition of existing data points, our KDE-based approach generates
new data points that capture the underlying statistical characteristics
of the original measurements. In our case, the multidimensional data
consists of current evolution traces measured across devices during
programming cycles shown in Fig. 5(a). By employing Gaussian kernel
functions within KDE, we construct a smooth, continuous, and joint
PDF that accurately captures the complex relationships and correlations
between different aspects of device behavior. This refined PDF serves
as a generative model, enabling us to synthesize new current evolution
traces that exhibit the same statistical properties as the original data. In
other words, the generated traces are statistically close to the measured
ones, but they provide additional samples to expand the dataset and
improve the sample diversity in our system-level simulations.

Fig. 6(a) shows the augmented current evolutions of devices pro-
grammed from HRS to LRS3, generated based on measurements of
real devices shown in Fig. 5. For direct comparison, the number of
synthesized traces matches the original dataset size. However, the data
generation is not limited to this quantity, and a significantly larger
number of data samples can be created. Comparing the distributions
of programming duration and final current values in Fig. 6(b) and (c)
reveals a close alignment between the generated data and the raw data
traces, validating the effectiveness of the proposed data augmentation
method. This leads to the generation of realistic and diverse synthetic
data traces that faithfully reflect the characteristics of the real devices.

To further validate the preservation of correlations between write
pulse count and read current variability in the generated data, we
plot the correlation between these two variables in Fig. 7. The strong
agreement between the raw and augmented data distributions confirms
that the synthesized data accurately captures the inherent correlations
6

present in the original measurements. Both distributions show similar
trends: devices requiring less write pulses tend to have wider distri-
butions in their final Iread values. Besides, the devices requiring more
number of pulses to switch lead to a low-amplitude Iread after switch-
ing, which implies the devices that are more difficult to switch may
ultimately settle into lower conductance. Maintaining this correlation
is essential for ensuring the accuracy of system-level simulations.

Multivariate KDE provides a valuable tool for augmenting initial
RRAM measurement data, expanding the available dataset for accurate
modeling of large-scale RRAM systems with numerous devices without
the need to reuse raw data. By pre-generating data traces through
multivariate KDE, this approach can be seamlessly integrated with
the LUT-based device modeling methodology. By combining these two
approaches, we can incorporate comprehensive variability modeling
into our FPGA emulator, accommodating a large number of devices
with diverse behavior characteristics. This allows us to accurately
simulate the impact of device-to-device variability on RRAM crossbar
performance, including metrics such as programming latency, energy
consumption, and computational accuracy. The detailed implementa-
tion of this combined approach on the FPGA platform is presented in
the following subsection.

3.3. System architecture of RRAMulator

FPGA technology, with its inherent reconfigurability and high par-
allelism, offers a promising platform for cycle-accurate emulation of
large-scale RRAM systems, effectively capturing the impact of device-
to-device variability.

Fig. 8 shows the overall architecture of the proposed FPGA-based
RRAM crossbar emulator. RRAMulator implements essential operations
for RRAM crossbar arrays, including write, read for memory appli-
cations, and VMMs for IMC applications. To facilitate efficient data
transfer between the PC and the FPGA emulator, we developed a C-
based software program using the Xilinx Vivado software development
kit (SDK). This program manages the transmission of input frames to
the emulator and retrieves the processed data from the BRAMs. Input
frames contain predefined operational codes specifying the desired
operation (e.g., programming, read, VMM), along with the addresses of
the target RRAM devices within the crossbar array. These frames also
include the necessary data payloads, such as matrix values for program-
ming or input vectors for VMM operation. To minimize communication
overhead, burst mode transmission is supported, allowing for the effi-
cient transfer of input and output data for an entire column or row with
a single operation. Input frames are transmitted to the programmable
logic (PL) of the FPGA through general-purpose input/output (GPIO)
interfaces and are subsequently processed by an instruction decoder.
The decoder then parses the input frames, extracting relevant instruc-
tions and data, which are then forwarded to the RRAM crossbar array
for execution.

The RRAM crossbar, depicted in Fig. 8(b), comprises the emulated
RRAM devices and peripheral circuitry. Some peripheral components

Microelectronics Reliability 168 (2025) 115630J. Wen et al.

Fig. 8. (a) System architecture of the proposed FPGA-based RRAM emulator. (b)
Detailed architecture of the emulated RRAM crossbar array including peripheral
circuitry [20].

essential for RRAM operation are mixed-signal circuits that cannot be
fully emulated on an FPGA. To ensure cycle-accurate emulation, we
construct behavioral models of these components, incorporating crucial
timing information to accurately replicate their functionality.

When an operation is initiated, the control unit orchestrates the sys-
tem by dispatching control signals to the BL and WL drivers, adhering
to the generated timing information defining pulse width, amplitude,
and synchronization. This synchronization ensures that the voltages
applied on the BL and WL coincide precisely during the programming
and read operations, mimicking the behavior of pulses driving the
RRAM devices. Furthermore, the amplitudes of the BL and WL voltages
determine the conductance value to be stored in the device model of
the selected cell. At the output, successive approximation register (SAR)
based analog-to-digital converters (ADCs) are shared across rows via
a multiplexer to amortize the high hardware costs [2]. To accurately
model SAR ADC latency, the ADC output is streamed out with shift
registers.

Device-to-device variability is represented by pre-loading augmented
data traces, derived for each resistance state via multivariate KDE,
into a dedicated variability BRAM. A linear-feedback shift register
(LSFR) generates uniformly distributed random numbers to sample
these traces during runtime. When a device programming operation
is initiated, a random number is recorded as an index, along with
the target resistance state’s index. This combined index fetches the
corresponding data trace from the variability BRAM, which dictates
the specific LUT used in the device model to represent the device’s
current evolution during programming. Incorporating this trace allows
the emulated device model to exhibit realistic variations in program-
ming pulse count and read currents, reflecting the inherent statistical
variability of real RRAM devices. This implementation is advantageous
as the computationally intensive data augmentation with multivariate
KDE is performed offline, leaving only the negligible latency of data
retrieval from the variability BRAM as overhead during emulation.
This ensures that variability modeling does not bottleneck the overall
emulation speed. In addition to device-to-device variability, cycle-to-
cycle variability can also be integrated into the platform by storing
cycle-specific data in the variability BRAM along with a corresponding
cycle index. During programming, variability data can be accessed
based on both device and cycle indices, enabling accurate modeling
of cycle-to-cycle and device-to-device variations simultaneously.
7

The ISPVA write-verify algorithm is implemented within the emu-
lator. Threshold values for different conductance states are configured
via the developed software. The pulse trains comprised of Vwrite and
Vread in Fig. 2 are generated automatically by the control unit with BL
and WL drivers.

During programming, an iterative process takes place between the
ADC outputs, the fetched data trace, and the control unit. The write-
verify module compares the ADC outputs to the configured thresholds.
If the ADC outputs fall below the threshold for the target conductance
state, it indicates that the device has not yet transitioned to the target
state. In this case, the control unit generates the next Vwrite with
the incremental amplitude. The device model retrieves the next data
point from the fetched data trace, which continues the verification.
Conversely, if the ADC outputs exceed the threshold, it signifies that
the device has successfully transitioned to the target state. The control
unit then terminates the programming sequence for that device and
proceeds to the next one. This interactive interplay ensures that the
write-verify algorithm adapts the programming pulse sequence based
on the real-time behavior of the emulated device, incorporating the
inherent variability. For VMM operations, the write-verify algorithm
is not employed. Instead, the digitized accumulation results are stored
directly in the output BRAM and can be accessed via the implemented
program.

The trace-based energy consumption for each operation is esti-
mated using the modified NeuroSim framework [22], with technology-
dependent parameters calibrated to the IHP 130 nm process design
kit (PDK). Upon completion of an emulated operation, the framework
receives some relevant dynamic metrics dumped from the emulator
during that operation. For example, pulse counts and Iread after each
pulse from the programming phase are used to estimate programming
energy, while input vectors and stored conductance values contribute
to the energy consumption estimation for VMMs.

In summary, our FPGA-based RRAM crossbar emulator, RRAMula-
tor, with its cycle-accurate emulation of RRAM crossbar behavior, in-
corporates a modified NeuroSim framework to estimate trace-based en-
ergy consumption. We provide a comprehensive platform for evaluating
the energy efficiency and overall performance of RRAM-based systems,
accounting for device variability and programming algorithms.

4. Evaluation

To evaluate the proposed RRAMulator framework, we conducted
a series of experiments focusing on two key aspects: emulation speed
compared to traditional CPU-based behavioral simulations, and energy
analysis of an RRAM-based DFT accelerator. RRAMulator is developed
in Verilog and implemented on a Xilinx ZCU102 evaluation board using
the Vivado Design Suite. It features configurable parameters to enhance
adaptability. In the experiments, pulse widths for Vwrite and Vread are
set to 1 μs and 100 ns, respectively, aligning the 10 MHz system clock
with the Vread pulse width. The Vwrite pulse width is chosen to match
the device measurements with ISPVA [13].

To evaluate the emulation speed and highlight the advantages of
RRAMulator, we map the designs with various crossbar sizes onto the
FPGA, systematically increasing the scale to assess performance under
different workloads. For each crossbar configuration, the input matrices
consisting of 2-bit values are randomly generated with an equal distri-
bution of states. We measure the time required to complete a set of
representative operations, including programming the whole crossbar
followed by 1000 times of VMMs. To quantify the speedup achieved by
RRAMulator, we compare the emulation time against the corresponding
simulation time obtained by running the same Verilog design on a con-
ventional CPU using the Vivado simulator. This comparative analysis
demonstrates the effectiveness of RRAMulator in accelerating RRAM
system simulations.

A primary goal of RRAMulator is to achieve real-time emulation,
where the emulation speed precisely matches real-world timing. In our

Microelectronics Reliability 168 (2025) 115630J. Wen et al.
Fig. 9. Comparison between the behavioral simulation and emulation time for various
sizes of crossbar arrays in logarithmic scale. The evaluation involves mapping a matrix
containing 2-bit values to a crossbar followed by 1000 times VMM operations [20].

case, the timing parameters for ISPVA are specifically adopted, as all
device characterizations are obtained based on this algorithm. This is
crucial for accurately interfacing with external high-performance plat-
forms like RISC-V processors, which operate on real-world timescales.
While the clock frequency of RRAMulator can be increased to accelerate
the simulation, doing so would result in a design speed faster than real
time, causing synchronization issues and mismatches with the external
platform. Conversely, a slower emulation speed can introduce delays
and bottlenecks in the overall system. Therefore, maintaining real-time
emulation is essential for seamless integration and accurate interaction
with external platforms.

The results in Fig. 9 show a significant speedup achieved by the
RRAMulator compared to conventional CPU-based behavioral simula-
tions. This speedup is particularly pronounced for larger crossbar sizes,
highlighting the emulator’s ability to efficiently handle the increasing
complexity and parallelism inherent in such systems. The fact that
CPU-based simulations are far from real time further emphasizes the
advantage of the FPGA platform, which leverages its high parallelism
to achieve fast emulation.

Furthermore, the inclusion of device-to-device variability in the
model incurs minimal overhead, as evidenced by the marginal differ-
ence in simulation time between scenarios with and without the con-
sideration of variability. This efficient variability modeling approach,
coupled with the LUT-based device model, enables real-time emulation
while accurately capturing the impact of device variations on system
behavior.

Regarding resource utilization, the 128 × 128 RRAM crossbar array,
including peripheral circuitry, consumes approximately 10% of the
available LUTs, 7% of the BRAM, and 4% of the flip-flops on the
Xilinx ZCU102 board. This demonstrates the model’s potential for scal-
ability to larger crossbar sizes while maintaining reasonable resource
consumption.

In summary, the proposed FPGA-based emulator serves as a highly
flexible and efficient platform for emulating RRAM-based systems,
offering real-time performance that is not achievable with CPU-based
simulations. Unlike application-specific integrated circuit (ASIC) im-
plementations, which are optimized for speed and power efficiency
in final applications, the FPGA emulator is designed to support rapid
prototyping and system-level evaluation during the development phase.
Compared to other emulation platforms, such as CPU and GPU-based
frameworks, the FPGA implementation achieves significantly lower
latency and allows hardware-in-the-loop co-simulations, making it par-
ticularly suited for cycle-accurate evaluations of device and system
behaviors.

5. Case study

To showcase the capabilities of our proposed RRAMulator frame-
work, we simulate an RRAM-based DFT accelerator. DFT is a fundamen-
tal algorithm in signal processing, image compression, and telecommu-
nications, converting time-domain signals into their frequency-domain
8

Fig. 10. Computing DFT with RRAM crossbars. Real and imaginary parts of twiddle
factors are mapped as device conductance onto separate crossbars.

Fig. 11. (a) Comparison of normalized energy consumption for programming twiddle
factors onto RRAM crossbars versus performing computations with different bitwidths
for 128-point DFT. (b) PSNR of DFT computation results as a function of twiddle factor
bitwidth.

representations. This transformation is achieved through VMMs be-
tween input symbols and a matrix of complex-valued twiddle factors,
which can be expressed as:
𝐗 = 𝐖𝐱. (1)

Leveraging the inherent parallelism and energy efficiency of RRAM
crossbars, the DFT can be performed in the analog domain by mapping
the twiddle factors onto the crossbar as device conductance values. To
accommodate the complex nature of twiddle factors, which comprise
real and imaginary components, separate computations are conducted
for each part.

Fig. 10 details the system architecture of the RRAM-based DFT
accelerator, and it should be noted that only the computation of the real
part of X is depicted. Signed computations are achieved by mapping
twiddle factors as conductance difference between two crossbars [6].
To meet the resolution requirements of DFT computations, each twiddle
factor is mapped to a cluster of devices, and bit significance is recovered
through shift-and-add operations on the digitized outputs [35].

To evaluate energy consumption and computational accuracy, we
simulate a 128-point DFT using RRAM crossbars with augmented de-
vice data to account for device-to-device variability. Twiddle factors are
mapped to RRAM devices with 2-bit resolution using ISPVA and 8-bit
ADCs for readout. The inputs are encoded as binary numbers with 6-bit
resolution.

Fig. 11(a) demonstrates the energy consumption for programming
twiddle factors onto the crossbars and computations relative to the
bitwidth of coefficients. The results are normalized to the energy con-
sumed at a minimal bitwidth of two, namely, each signed twiddle factor
mapped to a differential device pair. It can be noticed that a significant
gap exists between programming and computational energy. At the
minimum bitwidth, programming consumes approximately 325 times
more energy than computation. This disparity increases with bitwidth,

Microelectronics Reliability 168 (2025) 115630J. Wen et al.
reaching a factor of 618 at a bitwidth of eight. The results highlight
the importance of minimizing frequent device reprogramming to avoid
the high energy cost associated with this process. To mitigate the
impact of high programming energy, it is essential to perform a large
number of computations per programming cycle. This amortizes the
programming cost over multiple computations, enhancing the overall
energy efficiency of RRAM-based DFT accelerators. Leveraging the
non-volatility of RRAM devices, twiddle factors can be retained after
power-off. However, protecting devices against dynamic effects such
as read disturb and temperature dependency is crucial, as these non-
ideal effects can distort stored values and necessitate energy-intensive
reprogramming for data recovery.

To assess the computational accuracy of the system and the impact
of device variability, we utilize the peak signal-to-noise ratio (PSNR)
metric. PSNR is a widely used measure in signal processing that quanti-
fies the quality of signals by comparing the maximum possible power of
a signal to the power of corrupting noise. In our evaluation, we compute
the PSNR of the signal processed by the RRAM-based DFT accelerator
against a reference signal obtained from an ideal DFT implementation.
This allows us to quantify the degree of signal degradation introduced
by the RRAM device’s inherent variability and the approximation errors
in the analog computation. A higher PSNR value indicates better signal
quality and closer agreement with the ideal DFT output. The PSNR can
be computed as:

PSNR = 10 log10

(

MAX2
MSE

)

, (2)

where MAX is the maximum value of the signal and MSE is the mean
squared error between the RRAM-based DFT outputs and the reference.

Fig. 11(b) presents the PSNR of the RRAM-based DFT accelerator
for various twiddle factor resolutions, both with and without consid-
ering device-to-device variability. Each configuration contains 1000
experiments with randomly generated input signals containing complex
numbers. The results reveal a substantial margin between the PSNR
with and without variability, indicating that device variability sig-
nificantly impacts computational accuracy. Ignoring device-to-device
variability in simulations may lead to overly optimistic accuracy es-
timates. Furthermore, the PSNR initially increases with higher twiddle
factor resolutions in both scenarios but eventually plateaus, showing
that beyond a certain resolution, factors such as ADC precision and
input data resolution become the primary limitations to computational
accuracy. The gap between the two curves suggests potential for further
improvement in the accuracy of RRAM-based DFT accelerators by de-
veloping reliable mapping techniques to mitigate the impact of device
variability, such as the variability-aware progressive device mapping
scheme proposed in [9].

6. Conclusion

In this work, we present RRAMulator, an efficient FPGA-based
emulation platform for RRAM-based IMC systems. To improve system
performance, we employ a lightweight LUT-based device model that
avoids the complexity of traditional device models in system-level
simulations. We enhance this approach with a data-driven variability
modeling technique based on multivariate KDE, which leverages de-
vice measurements to expand the available data and accurately model
device-to-device variations. By combining these two approaches, we
achieve real-time emulation of RRAM crossbars, enabling co-simulation
with other designs for seamless integration. Furthermore, we imple-
ment the RRAM crossbar array with behavioral models of peripheral
circuitry on the FPGA, accurately reflecting the behavior and latency of
the system. We integrate the NeuroSim framework to estimate energy
consumption based on traces generated during emulation, providing a
comprehensive assessment of system efficiency. Our implementation
on an FPGA demonstrates a significant speedup factor up to 2510
times compared to CPU-based simulations for a 128 × 128 crossbar,
9

while maintaining low hardware resource utilization. The RRAM-based
DFT simulation conducted on RRAMulator reveals insights into energy
efficiency and computational accuracy, showcasing the platform’s po-
tential for deep analysis of the systems. Overall, RRAMulator offers
an efficient and comprehensive framework for modeling and evalu-
ating RRAM-based IMC systems, accelerating the system design space
exploration and development.

CRediT authorship contribution statement

Jianan Wen: Conceptualization, Methodology, Software, Formal
analysis, Investigation, Visualization, Writing – original draft, Writing –
review & editing. Fabian Luis Vargas: Methodology, Formal analysis,
Validation, Writing – review & editing. Fukun Zhu: Investigation,
Software, Visualization, Validation. Daniel Reiser: Conceptualization,
Writing – review & editing. Andrea Baroni: Resources, Data cura-
tion, Writing – review & editing. Markus Fritscher: Conceptualization,
Writing – review & editing. Eduardo Perez: Resources, Data curation,
Writing – review & editing. Marc Reichenbach: Resources, Writing –
review & editing. Christian Wenger: Project administration, Funding
acquisition, Writing – review & editing. Milos Krstic: Supervision,
Project administration, Funding acquisition, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

The authors acknowledge the financial support by the Federal Min-
istry of Education and Research of Germany in the program of ‘‘Sou-
verän. Digital. Vernetzt’’. Joint project 6G-RIC, project identification
number: 16KISK026.

Data availability

The data that has been used is confidential.

References

[1] V. Sze, Y. Chen, T. Yang, J. Emer, Efficient processing of deep neural networks:
A tutorial and survey, Proc. IEEE 105 (2017) 2295–2329.

[2] S. Yu, H. Jiang, S. Huang, X. Peng, A. Lu, Compute-in-memory chips for deep
learning: Recent trends and prospects, IEEE Circuits Syst. Mag. 21 (2021) 31–56.

[3] H. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, B. Lee, F. Chen, M. Tsai,
Metal–oxide RRAM, Proc. IEEE 100 (2012) 1951–1970.

[4] L. Upton, A. Levy, M. Scott, D. Rich, W. Khwa, Y. Chih, M. Chang, S. Mitra, P.
Raina, B. Murmann, EMBER: A 100 MHz, 0.86 mm2, multiple-bits-per-cell RRAM
macro in 40 nm CMOS with compact peripherals and 1.0 pj/bit read circuitry,
in: ESSCIRC 2023- IEEE 49th European Solid State Circuits Conference, ESSCIRC,
2023, pp. 469–472.

[5] M. Hu, J. Strachan, Z. Li, E. Grafals, N. Davila, C. Graves, S. Lam, N.
Ge, J. Yang, R. Williams, Dot-product engine for neuromorphic computing:
Programming 1t1m crossbar to accelerate matrix–vector multiplication, in: 2016
53nd ACM/EDAC/IEEE Design Automation Conference, DAC, 2016, pp. 1–6.

[6] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. Yang, H. Qian,
Fully hardware-implemented memristor convolutional neural network, Nature
577 (2020) 641–646, http://dx.doi.org/10.1038/s41586-020-1942-4.

[7] W. Wan, R. Kubendran, C. Schaefer, S. Eryilmaz, W. Zhang, D. Wu, S. Deiss,
P. Raina, H. Qian, B. Gao, S. Joshi, H. Wu, H. Wong, G. Cauwenberghs, A
compute-in-memory chip based on resistive random-access memory, Nature 608
(2022) 504–512, http://dx.doi.org/10.1038/s41586-022-04992-8.

[8] X. Li, B. Gao, B. Lin, R. Yu, H. Zhao, Z. Wang, Q. Qin, J. Tang, Q. Zhang, X. Li,
Z. Hao, X. Li, D. Kong, L. Ma, N. Deng, H. Qian, H. Wu, First demonstration of
homomorphic encryption using multi-functional RRAM arrays with a novel noise-
modulation scheme, in: 2022 International Electron Devices Meeting, IEDM,
2022, pp. 33.5.1–33.5.4.

http://refhub.elsevier.com/S0026-2714(25)00043-5/sb1
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb1
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb1
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb2
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb2
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb2
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb3
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb3
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb3
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb4
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb4
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb4
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb4
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb4
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb4
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb4
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb4
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb4
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb5
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb5
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb5
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb5
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb5
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb5
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb5
http://dx.doi.org/10.1038/s41586-020-1942-4
http://dx.doi.org/10.1038/s41586-022-04992-8
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb8
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb8
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb8
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb8
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb8
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb8
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb8
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb8
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb8

Microelectronics Reliability 168 (2025) 115630J. Wen et al.
[9] J. Wen, A. Baroni, E. Perez, M. Uhlmann, M. Fritscher, K. KrishneGowda, M.
Ulbricht, C. Wenger, M. Krstic, Towards reliable and energy-efficient RRAM
based discrete Fourier transform accelerator, in: 2024 Design, Automation and
Test in Europe Conference and Exhibition, DATE, 2024, pp. 1–6.

[10] A. Mehonic, D. Ielmini, K. Roy, O. Mutlu, S. Kvatinsky, T. Serrano-Gotarredona,
B. Linares-Barranco, S. Spiga, S. Savelev, A. Balanov, et al., Roadmap to
neuromorphic computing with emerging technologies, 2024, arXiv preprint
arXiv:2407.02353.

[11] S. Maheshwari, S. Stathopoulos, J. Wang, A. Serb, Y. Pan, A. Mifsud, L. Leene, J.
Shen, C. Papavassiliou, T. Constandinou, T. Prodromakis, Design flow for hybrid
CMOS/Memristor systems—Part I: Modeling and verification steps, IEEE Trans.
Circuits Syst. I: Regul. Pap. 68 (2021) 4862–4875.

[12] E. Pérez-Bosch Quesada, R. Romero-Zaliz, E. Pérez, M. Kalishettyhalli Mahadeva-
iah, J. Reuben, M. Schubert, F. Jiménez-Molinos, J. Roldán, C. Wenger, Toward
reliable compact modeling of multilevel 1T-1r RRAM devices for neuromorphic
systems, Electron. 10 (2021) https://www.mdpi.com/2079-9292/10/6/645.

[13] E. Pérez, C. Zambelli, M. Mahadevaiah, P. Olivo, C. Wenger, Toward reliable
multi-level operation in RRAM arrays: Improving post-algorithm stability and
assessing endurance/data retention, IEEE J. Electron Devices Soc. 7 (2019)
740–747.

[14] D. Reiser, M. Reichenbach, T. Rizzi, A. Baroni, M. Fritscher, C. Wenger, C.
Zambelli, D. Bertozzi, Technology-aware drift resilience analysis of RRAM cross-
bar array configurations, in: 2023 21st IEEE Interregional NEWCAS Conference,
NEWCAS, 2023, pp. 1–5.

[15] J. Wen, A. Baroni, E. Perez, M. Ulbricht, C. Wenger, M. Krstic, Evaluating read
disturb effect on RRAM based AI accelerator with multilevel states and input
voltages, in: 2022 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems, DFT, 2022, pp. 1–6.

[16] E. Quesada, M. Mahadevaiah, T. Rizzi, J. Wen, M. Ulbricht, M. Krstic, C.
Wenger, E. Perez, Experimental assessment of multilevel RRAM-based vector-
matrix multiplication operations for in-memory computing, IEEE Trans. Electron.
Devices 70 (2023) 2009–2014.

[17] T. Rizzi, A. Baroni, A. Glukhov, D. Bertozzi, C. Wenger, D. Ielmini, C. Zam-
belli, Process-voltage-temperature variations assessment in energy-aware resistive
RAM-based FPGAs, IEEE Trans. Device Mater. Reliab. 23 (2023) 328–336.

[18] L. Poehls, M. Fieback, S. Hoffmann-Eifert, Al, Review of manufacturing process
defects and their effects on memristive devices, J. Electron. Test. 37 (2021)
427–437.

[19] M. Fieback, L. Pöhls, Lifecycle management of emerging memories, in: 2024 IEEE
European Test Symposium, ETS, 2024, pp. 1–6.

[20] J. Wen, F. Vargas, F. Zhu, D. Reiser, A. Baroni, M. Fritscher, E. Perez, M.
Reichenbach, C. Wenger, M. Krstic, Cycle-accurate FPGA emulation of RRAM
crossbar array: Efficient device and variability modeling with energy consump-
tion assessment, in: 2024 IEEE 25th Latin American Test Symposium, LATS,
2024, pp. 1–6.

[21] J. Wen, M. Ulbricht, E. Perez, X. Fan, M. Krstic, Behavioral model of dot-product
engine implemented with 1t1r memristor crossbar including assessment, in: 2021
24th International Symposium on Design and Diagnostics of Electronic Circuits
and Systems, DDECS, 2021, pp. 29–32.
10
[22] X. Peng, S. Huang, Y. Luo, X. Sun, S. Yu, DNN+NeuroSim: An end-to-end
benchmarking framework for compute-in-memory accelerators with versatile
device technologies, in: 2019 IEEE International Electron Devices Meeting, IEDM,
2019, pp. 32.5.1–32.5.4.

[23] V. Ntinas, I. Vourkas, A. Abusleme, G. Sirakoulis, A. Rubio, Experimental study
of artificial neural networks using a digital memristor simulator, IEEE Trans.
Neural Netw. Learn. Syst. 29 (2018) 5098–5110.

[24] M. Tolba, W. Sayed, M. Fouda, H. Saleh, M. Al-Qutayri, B. Mohammad, A.
Radwan, Digital emulation of a versatile memristor with speech encryption
application, IEEE Access. 7 (2019) 174280–174297.

[25] T. Luo, X. Wang, C. Qu, M. Lee, W. Tang, W. Wong, R. Goh, An FPGA-
based hardware emulator for neuromorphic chip with RRAM, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 39 (2020) 438–450.

[26] Y. Shi, Y. Sun, J. Jiang, G. He, Q. Wang, N. Jing, Fast FPGA-based emulation
for reram-enabled deep neural network accelerator, in: 2021 IEEE International
Symposium on Circuits and Systems, ISCAS, 2021, pp. 1–5.

[27] S. Ruffini, L. Caronti, K. Yıldırım, D. Brunelli, NORM: An FPGA-based non-
volatile memory emulation framework for intermittent computing, J. Emerg.
Technol. Comput. Syst. 18 (2022) http://dx.doi.org/10.1145/3517812.

[28] Y. Zhao, S. Ullah, S. Sahoo, A. Kumar, NvMISC: Toward an FPGA-based
emulation platform for RISC-V and nonvolatile memories, IEEE Embed. Syst.
Lett. 15 (2023) 170–173.

[29] M. Fritscher, A. Veronesi, A. Baroni, J. Wen, T. Spätling, M. Mahadevaiah, N.
Herfurth, E. Perez, M. Ulbricht, M. Reichenbach, A. Hagelauer, M. Krstic, Pro-
totyping reconfigurable RRAM-based AI accelerators using the RISC-v ecosystem
and digital twins, High Perform. Comput. (2023) 500–514.

[30] W. Zhang, P. Yao, B. Gao, Q. Liu, D. Wu, Q. Zhang, Y. Li, Q. Qin, J. Li, Z. Zhu,
Y. Cai, D. Wu, J. Tang, H. Qian, Y. Wang, H. Wu, Edge learning using a fully
integrated neuro-inspired memristor chip, Sci. 381 (2023) 1205–1211.

[31] M. Uhlmann, T. Rizzi, J. Wen, E. Pérez-Bosch Quesada, B. Al Beattie, K. Ochs,
E. Pérez, P. Ostrovskyy, C. Carta, C. Wenger, G. Kahmen, LUT-based RRAM
model for neural accelerator circuit simulation, in: Proceedings of the 18th ACM
International Symposium on Nanoscale Architectures, 2024.

[32] A. Baroni, A. Glukhov, E. Pérez, C. Wenger, D. Ielmini, P. Olivo, C. Zambelli,
Low conductance state drift characterization and mitigation in resistive switching
memories (RRAM) for artificial neural networks, IEEE Trans. Device Mater.
Reliab. 22 (2022) 340–347.

[33] E. Brum, M. Fieback, T. Copetti, H. Jiayi, S. Hamdioui, F. Vargas, L. Poehls,
Evaluating the impact of process variation on RRAMs, in: 2021 IEEE 22nd Latin
American Test Symposium, LATS, 2021, pp. 1–6.

[34] J. Hwang, S. Lay, A. Lippman, Nonparametric multivariate density estimation:
A comparative study, IEEE Trans. Signal Process. 42 (1994) 2795–2810.

[35] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. Strachan, M. Hu,
R. Williams, V. Srikumar, ISAAC: a convolutional neural network accelerator with
in-situ analog arithmetic in crossbars, in: Proceedings of the 43rd International
Symposium on Computer Architecture, 2016, pp. 14–26, http://dx.doi.org/10.
1109/ISCA.2016.12.

http://refhub.elsevier.com/S0026-2714(25)00043-5/sb9
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb9
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb9
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb9
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb9
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb9
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb9
http://arxiv.org/abs/2407.02353
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb11
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb11
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb11
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb11
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb11
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb11
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb11
https://www.mdpi.com/2079-9292/10/6/645
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb13
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb13
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb13
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb13
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb13
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb13
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb13
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb14
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb14
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb14
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb14
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb14
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb14
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb14
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb15
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb15
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb15
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb15
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb15
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb15
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb15
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb16
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb16
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb16
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb16
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb16
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb16
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb16
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb17
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb17
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb17
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb17
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb17
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb18
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb18
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb18
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb18
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb18
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb19
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb19
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb19
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb20
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb20
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb20
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb20
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb20
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb20
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb20
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb20
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb20
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb21
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb21
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb21
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb21
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb21
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb21
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb21
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb22
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb22
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb22
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb22
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb22
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb22
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb22
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb23
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb23
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb23
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb23
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb23
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb24
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb24
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb24
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb24
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb24
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb25
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb25
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb25
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb25
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb25
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb26
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb26
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb26
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb26
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb26
http://dx.doi.org/10.1145/3517812
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb28
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb28
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb28
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb28
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb28
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb29
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb29
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb29
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb29
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb29
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb29
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb29
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb30
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb30
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb30
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb30
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb30
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb31
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb31
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb31
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb31
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb31
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb31
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb31
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb32
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb32
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb32
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb32
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb32
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb32
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb32
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb33
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb33
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb33
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb33
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb33
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb34
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb34
http://refhub.elsevier.com/S0026-2714(25)00043-5/sb34
http://dx.doi.org/10.1109/ISCA.2016.12
http://dx.doi.org/10.1109/ISCA.2016.12
http://dx.doi.org/10.1109/ISCA.2016.12

	RRAMulator: An efficient FPGA-based emulator for RRAM crossbar with device variability and energy consumption evaluation
	Introduction
	Related Works
	Methodology
	LUT-based Device Modeling
	Device Variability Modeling
	System Architecture of RRAMulator

	Evaluation
	Case Study
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Data availability
	References

