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Abstract This chapter addresses opportunities for memristive devices in the frame-
work of neuromorphic computing. Memristive devices are two-terminal circuit ele-
ments, comprising resistance and memory functionality. This simple and likewise
ingeniously concept allows beneficial applications in numerous neuromorphic cir-
cuits. However, the electrical characteristics as well as the materials and techno-
logical framework of memristive devices need an optimization for each specific
application. The chapter starts with a short overview of basic principles of biological
data processing followed by a taxonomy of different bio-inspired computing archi-
tectures, divided into time-dependent and time-independent concepts. Furthermore,
the requirements on particular memristive device properties, such as I -V linearity,
switching time, retention, number of states, time-dependency, and device variability,
are discussed. The results of tangible examples of digital and analog memristive
switching devices used in a deep neural network based on CMOS-integrated resis-
tive random access memory devices (RRAMs) for chronic obstructive pulmonary
disease (COPD) detection, in stochastic learning, in bio-inspired analog learning,
and, finally, in oscillatory computing are presented and discussed.
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1 Introduction

While traditional von Neumann computing (binary and serial) continues to dominate
the information and communication technology (ICT), recent groundbreaking inno-
vations in alternative computing architectures and advanced electronic devices have
become hard to ignore [1–6]. The mature silicon (Si)-based, complementary metal
oxide semiconductor (CMOS) technology behind von Neumann computing led to
tremendous progress in digital computing power over the last six decades. Moore’s
law, the prediction that the device integration density on a chip doubles every two to
three years, and accompanied by scaling laws, served as secure guidelines for CMOS
engineers [7, 8]. Today’s Si-CMOS technology is characterized by impressive tech-
nical specifications. To mention but a view, the smallest feature size in advanced
Si-CMOS transistor is in the order of 10 nm, several billion functional transistors are
integrated into a single arithmetic logic unit (ALU), and a von Neumann computer
is running at clock-frequencies of about 5 GHz [5]. Nonetheless, this success should
not disguise the fact that Si-based von Neumann computing reaches its limits in the
near future, and system performance progress has slowed down for a couple of years.
For example, although a further shrinking of transistor dimension is still possible,
limitations, such as quantummechanical tunneling, will set fundamental constraints.
The so-called memory gap appeared as another architecture-related show stopper.
While the clock frequency increased with every new chip generation, the memory
access time did not follow this trend. Therefore, the system performance is limited
because the data handling between the ALU and memory presents a data bottleneck
[9]. Aware of this stagnation, worldwide efforts by universities, research institu-
tions, and industry focus on numerous novel computing architectures and advanced
functional devices. Besides quantum computing, bio-inspired computing attracted
considerable attention [10–15]. The term “bio-inspired” embraces various classes of
computing architectures and hardware systems that take, to a more or less extent,
biological information pathways as guidelines into account. In order to categorize
such bio-inspired computing systems, basic principles of information pathways in
nervous systems are summarized here. We want to emphasize, that the following
introduction to the biological background describes the information processing in
nervous systems in a very simplified way and represents only the tip of the iceberg.
For more details on the intriguing biochemical and spatio-temporal mechanisms in
this context, we refer the reader to the literature [16, 17]. A common way to explain
information pathways in nervous systems is to distinguish the processing on the local
neuron level from that of the entire system. Neurons are the information processing
units in nervous systems. Neurons receive and process information in the form of
action potentials. In Fig. 1a, the structure of a neuron, including the soma, dendrites,
the axon, and connections to other neurons by synapses, is sketched [16]. An action
potential (spike) is an abrupt transitory and transmitted change of the resting poten-
tial across the cell membrane. The amplitude of a spike is 100 mV, and its pulse
duration is about 3.5 ms. Post-synaptic neurons receive action potentials (signals)
from pre-synaptic neurons via dendrites and synapses. Those action potentials are
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Fig. 1 a Blueprint of a neuron, including an enlarged sketch of a synapse and the illustration
of a single action potential (i.e., a spike). Reprinted with permission of the corresponding author
from [18]. b Change of synaptic weight (�W ) in dependency on the timing (�t = tpost − tpre)
of pre-synaptic spikes at time tpre and post-synaptic spikes at time tpost illustrating spike-timing
dependent plasticity (STDP).�W is measured 20-30min after inducing the synaptic changewith 60
correlated pre- and postsynaptic spikes with a frequency of 1 Hz at synapses between hippocampal
glutamatergic neurons in culture. The data is fitted with exponential functions of the form �W =
e(−�t/τ) for �t > 0 (LTP) and �t < 0 (LTD). Adapted from [19] [G.-q. Bi & M.-m. Poo, Annu.
Rev. Neurosci. 24, 139–166 (2001)], with the permission of Annual Reviews. c Different irregular
signal patterns, which occur in nervous systems [20]. c©2003 IEEE. Adapted, with permission,
from [E. Izhikevich, IEEE Transactions on Neural Networks 14, 1569–1572 (2003)]
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integrated within the post neuron’s cell body. If the potential exceeds a threshold at
the axon hillock, a new or a series of new spikes are generated at the axon hillock.
Such a spike or spike trains are transmitted via the axon to subsequent neurons. The
process is called leaky-integrate-and-fire (LIF), reflecting that the cell membrane is
not a perfect insulator. The conduction velocity along the axon is between a few
cm/s up to a few tenth m/s. We like to underline that the spike duration (3.5 ms) and
the conduction velocity (e.g., 100 m/s) are six orders of magnitudes smaller than
the pulse duration (1 ns) and signal transmission speed (roughly the speed of light
in vacuum, 3 · 108 m/s) in modern processors, respectively. Facts, which indicate a
different information processing of von Neumann computers and nervous systems.
The mentioned interconnects are called synapses. Interestingly, the synaptic effica-
cies are not fixed and can change, which refers to the information coupling strength
between the pre- and post-neuron. The efficacy can be increased (i.e., synaptic poten-
tiation) or decreased (i.e., synaptic depression). This plastic behavior can last from
milliseconds to minutes [called short-term potentiation (STP) or short-term depres-
sion (STD)] or from hours to years and up to the whole lifetime of animals [called
long-term potentiation (LTP) or long-term depression (LTD)] [17]. The change of
synaptic coupling strength depends on the common activity of the pre- and post-
synaptic cells, e.g., in accordance to signal timing between the pre- and post-neuron.
This mechanism is called spike-timing-dependet plasticity (STDP) [21]. STDP is
closely related to Hebb’s learning rule, which says that neurons that fire together
wire together [22]. This rule describes the learning process in neural networks on
the local cellular level by adjusting the synaptic efficacy dependent on the common
activity of pre- and post-neurons. This further contributes to associative learning on
the network level [23, 24]. Accordingly, STDP represents a local learning rule and
is an essential process for establishing learning and memory in nervous systems [see
Fig. 1b][19, 25]. In stark contrast to von Neumann computers, the spike generation
in nervous systems is far from being regular. In dependency on the signal input of a
neuron, a plethora of different firing rates (ranging from Poisson-like to bursting) are
observed [26–28]. In Fig. 1c, examples of such irregular signal patterns are sketched
[20]. Any signal transmission in nervous systems is accompanied by errors and noise
[29]. For example, random potential fluctuations and the granular structure of neu-
rotransmitters lead to a pronounced stochastic component in biological information
pathways. Nevertheless, neural networks can store and retrieve information reliably.
So noise is not a bug in biological systems, it is a feature [30, 31]. Nonetheless,
although processes at the local neural level are highly stochastic, the entire nervous
system exhibits rhythmic brain waves. In the human brain, they appear in the form
of alpha, beta, and gamma waves [32]. Characteristic features, such as STDP [21,
25, 33], stochastic firing and bursting of neurons in the hundred Hz range, recurrent
network structures, and aspects of oscillatory synchrony in larger neuronal ensem-
bles [34–43] are essential ingredients in biological-based information processing.
Moreover, factors related to the close interaction of a nervous system with its envi-
ronment, i.e., external stimuli, are of crucial importance [44]. Therefore, neuronal
design principles provide a model for neuromorphic systems, which are diamet-
ric to development strategies in present binary ICT, including precise GHz clock
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frequencies, near-light-speed signal transmission, and clearly separated logic and
memory [45, 46]. In contrast to clock-driven von Neumann machines [9, 47], infor-
mation processing in biological nervous systems is characterized by highly parallel,
energy efficient, and adaptive architectures [10, 11, 14, 48].

Nowwe turn back to the field of neuromorphic circuits [10–15]. Bio-inspired com-
puting aims to realize biological plausible information pathways (a fewarementioned
above) in engineered systems. However, this goal immediately leads to numerous
questions and challenges: Which of the manifold and intriguing information path-
ways observed in biology need to be mimicked by neuromorphic circuits to establish
novel computing architecture with superior properties to conventional von Neumann
systems? Could any biological process be simulated by a von Neumann computer to
achieve similar performances as the biological model? Should novel neuromorphic
circuits be made on today’s mature Si-CMOS platform or might it be wise to open
the material “tools box” apart from Si technology in order to facilitate the integra-
tion of novel devices and/or to incorporate self-assembly strategies similar to those
observed in nature?

Might it be beneficial to design circuits working at biologically plausible time
scales, i.e., with pulse durations of about a few ms and signal conduction velocities
of about m/s, which lead to strong signal retardations? Finally, yet importantly, the
consideration of stochasticity could be an additional design goal in accordance with
its fundamental role in biology. These questions display only a small selection of pos-
sible approaches to mimic biological information pathways in engineered systems.
This chapter focuses on neuromorphic circuits that take up those hallmarks of biologi-
cal information processing that have been discussed above, i.e., STDP, stochasticity,
oscillatory computing, and so on. The circuits compromise redox-based memris-
tive devices as key components. Memristive devices consist of capacitor-like layer
sequence, i.e., metal-memristive material-metal stacks. A universal property of the
memristive devices is that thememristive state depends on previously induced charge
flows, applied currents, or applied electric fields, thus storing any resulting resistance
state. Memristive devices can be engineered to exhibit either binary switching or an
analog resistance variation. Both device categories are subjects of this chapter and
show beneficial features in pattern recognition and oscillatory computing. For details
concerning resistive switching and the underlying physical-chemical mechanisms,
we refer the reader to Chap.3 and the overwhelming literature on the subject [49–52].

2 Requirements for Memristive Devices for Neuromorphic
Computing

Memristive devices are being explored for many different types of neuromorphic
computation schemes, where their non-volatility allows computation to be per-
formed inmemory [53]. In this respect,memristive devices allow overcoming the von
Neumann bottleneck, where memory and computation are separated from each other

http://dx.doi.org/https://doi.org/10.1007/978-3-031-36705-2_2
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Fig. 2 Classification of different biologically inspired computing architectures within time-
dependent and time-independent computational schemes: the more biological the computational
scheme, the higher the expected cognitive performance

[9]. However, there aremany different neuromorphic computing architectures, which
place different requirements on memristive devices [54, 55]. Figure 2 shows a classi-
fication that relates different network architectures to their biological inspiration and
cognitive performance.While time-independent computing schemes aremostwidely
used, time-dependent computing schemes are more biologically realistic. However,
their technical implementation is much more challenging.While oscillatory comput-
ing and spiking neural networks (SNNs) taking the temporal dimension of the signals
into account [14, 56–58], mem-computing, and deep neural networks (DNNs) work-
ing in a time-independent way using synchronized signals (i.e., they are based on
clock signals) [57, 58]. This section will show the differences in the requirements for
the memristive devices. For this purpose, a short overview of the architectures will be
given, and the requirements they impose on memristive devices will be elaborated.
Concrete examples of memristive networks that use time-independent computational
schemes are discussed in Sect. 3, while examples of time-dependent neuromorphic
architectures are presented in Sect. 4.

Mem-Computing

Mem-computing was originally invented for non-bio-inspired applications which
aim to implement new computing architectures tasks like stateful [59, 60] and non-
stateful logic [61, 62], in-memory arithmetic operations [63], solving linear and
partial differential equations [64–66], optimization [67–69], and signal processing
[70, 71] (for a review, the reader is referred to [3, 55, 58]). In all of those applications,
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memristive devices are required which own a fast and low power switching, high
cycling endurance (e.g., > 1012 cycles for stateful logic) as well as a low device-
to-device and cycle-to-cycle variability [55, 58]. However, the inherent randomness
of memristive switching mechanisms are challenging for high-precision computing
tasks and different techniques are needed to increase the overall precision of the
devices [64, 65, 69].

Deep Neural Networks (DNNs)

DNNs [72] (including convolutional neural networks (CNN) [73]) are bio-inspired
computing schemes that benefit from the in-memory computing architectures incor-
porating memristive devices. In these networks, a large number of artificial neurons
arranged in layers connected in a feed-forward structure by adjustableweights. These
analog weights are trained with the backpropagation algorithm, which implements
the delta rule between each neural layer [72]. These networks are specialized in
pattern recognition tasks and build the backbone of today’s machine learning appli-
cations [3, 58]. However, several drawbacks come along with DNNs. The networks
are usually set up in software running on traditional von Neuman architecture, i.e.,
mostly on general-purpose graphics processing units (GPUs) [74] or tensor process-
ing units (TPUs) [75]. Since a huge amount of data is needed for training and many
learning cycles are required for real applications, these networks consume a large
amount of energy and space. In addition, the training is very time-consuming [3, 57].
In this context,memristive devices can provide a solution as their in-memory comput-
ing properties enable parallelization of processes, reducing power consumption and
training time by orders of magnitude [76–79]. The significantly increased efficiency
lies in implementing matrix-vector multiplications (MVMs) in hardware utilizing
Ohm’s law and Kirchoff’s current law [54]. For this, however, strict requirements
must be met by the memristive devices to be used as artificial synapses in DNNs,
which are summarized in Fig. 3.A linear, gradual, and symmetric change in resistance
is required for training [77, 80, 81]. For example, it has been shown that a 2% devia-
tion from perfect symmetry increases the required number of analog states to train a
DNN from 100 to 1000 [82]. In addition, endurance is essential since a lot of data is
needed for training, combined with high energy efficiency and low latency to enable
training directly on edge devices [83]. On the other hand, the training algorithm can
compensate for device variability and yield to a certain degree [82]. Transferring
pre-trained weights to memristive devices, furthermore, leads to less strict require-
ments the devices have to fulfill. In this respect, it has been shown that a resolution
of four to eight bits is sufficient to compete with floating-point precision weights
in the inference process [75, 84]. For this purpose, multiple binary devices can be
combined to mimic the weights of a synapse [85, 86]. However, the device variabil-
ity and yield are more critical for pre-trained networks, and endurance becomes less
crucial [82]. Retention is also of particular relevance. While for training, short-term
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Fig. 3 Comparison of the requirements memristive devices have to fulfill to be suitable for different
computational architectures

retention and stability are sufficient [78, 82, 87], for inference, long-term retention
and stability must be given [78, 82, 87].

Spiking Neural Networks (SNNs)

In SNNs, the computation is based on synaptic connectivity and asynchronous, event-
driven, and temporally precise signals [14, 15, 56–58, 88]. This enables such net-
works to adapt to changing environmental conditions and react accordingly. How-
ever, adequate local learning algorithms are required to exploit those advantages of
SNNs over DNNs. These algorithms must satisfy the special needs of memristive
devices and neuromorphic network structures in equalmeasure [89–97]. At themem-
ristive device level, several criteria, and in some cases different requirements from
DNNs, must be met in order to satisfy the bio-inspired learning rules designed for
SNNs. Figure 3 summarizes these and compares them to the device requirements
of DNNs. Since nonlinear time-dependent conductivity modulations are the basis of
learning in SNNs [57, 58], a gradual but nonlinear resistance change in memristive
devices can be beneficial [57, 97]. Furthermore, both the endurance and energy-
efficient switching and read-out are crucial properties formemristive devices in SNNs
[57, 83]. However, device-to-device and cycle-to-cycle variability [57] and yield are
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less critical since the effect of defective devices can be mitigated during learning
[93]. Furthermore, the switching speed is expected to be less important [57, 88],
especially if the networks run on a biologically relevant time scale with a spike dura-
tion of milliseconds and frequencies of a few Hz [33]. The performance of SNNs is
often investigated with pattern recognition tasks with frame-based datasets [3, 98].
In this respect, typical benchmark datasets containing static images are MNIST [99],
CIFAR [100], and ImageNet [101]. These datasets do not contain temporal informa-
tion. Thus, they do not allow to show the full potential of the time-dependent SNNs
[102] and an outperformance in comparison to DNNs has not been reported so far
[58]. More suitable benchmarks for SNNs should contain real-world spatio-temporal
data, e.g., collected with event-based sensors [98, 103]. Thus, instead of executing
pattern recognition on static data, SNNs are expected to be superior in interacting
with the real world in a dynamically changing environment by processing continu-
ous but sparse input streams on an energy-efficient way [57, 98, 102]. More suitable
benchmarks for those tasks are dealing, e.g., with hand and arm gesture detection
(DvsGesture) [104], automated driving [105, 106], or robotics [107]. Moreover, gen-
erally applicable learning algorithms and network structures, which can cope with
several different tasks, are within the focus of research [3, 15].

Oscillatory Computing

Nature uses time-coherent dynamics for information processing based on the forma-
tion of context-dependent, self-organized, and transient network structures. These
enable us to react adequately to changing environmental conditions. Furthermore,
these self-organized network structures are an important property for sensory integra-
tion [36, 108]. Even if the underlying mechanisms are only partially understood, the
interaction between dynamics and topology has been identified as one of the essen-
tial building blocks of information processing in the brain in recent years [109]. In
the current understanding, it is assumed that information is encoded into coherent
states by temporally correlated neural activity patterns [110]. This concept offers,
particularly, an elegant explanation for the binding problem - the question of the
mechanism of sensory integration, which allows our brain to construct uniform per-
ceptions from the multitude of sensory information. First evidence of these concepts
could have been gathered from experiments with sensorimotor networks [111].More
recent studies have shown the universality of these concepts for the entire brain [110].
In this respect, memristive devices allow a new degree of freedom for the concept of
neural synchrony: a localmemory that supports a transient connectivity pattern [112–
114]. The requirements for memristive devices needed for this have been less studied
and are the content of Sect. 4.2. However, the inherent stochasticity of memristive
devices has been shown to be helpful for this application [113].
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3 Time-Independent Neural Networks

This section deals with two memristive networks that use time-independent compu-
tational schemes, both relying on a fully CMOS-integrated 4 kbit resistive random-
access memory (RRAM) array [115–117]. The first network discussed in Sect. 3.1
is a mixed-signal-circuit implementation of a DNN for the detection of chronic
obstructive pulmonary disease (COPD) [118]. Here, the devices are used to store the
pre-trained weights of the DNN while the neurons are implemented in software. In
that way, the possibility for on-chip recognition of saliva samples using in-memory
techniques to detect COPD in a Point-of-Care application is shown. The second
network introduced in Sect. 3.2 exploits the RRAM cells’ inherent stochasticity to
solve a pattern recognition task [119, 120]. The stochastic artificial neural network
(StochANN) is able to learn a subset of the MNIST benchmark through the adapta-
tion of synaptic weights directly in hardware (in amixed-signal realization) through a
supervised local stochastic learning rule. Additional simulations of StochANNs with
a larger number of devices show the performance limits of such a network for the
whole MNIST benchmark. The results are compared to state-of-the-art approaches
using time-independent and time-dependent networks.

3.1 Deep Neural Network Implemented in CMOS-Integrated
RRAM Arrays Used for Chronic Obstructive Pulmonary
Disease Detection

In this section, a time-independent DNN trained for disease detection is introduced
[118]. The three-layer network is composed of a binary, fullyCMOS-integrated 4 kbit
RRAM array [115–117] emulating the synaptic weights, while neurons are imple-
mented in software. The network was trained entirely in software, and the weights
were subsequently transferred to the RRAM array. In that way, memristive devices
can be used for inference, while they do not have to fulfill the same requirements as
needed for training (see Sect. 2). In the following, first, the disease to be detected and
the relevant input parameters for the machine learning (ML) method are introduced.
Afterward, the network implementation and its performance are described.

COPD, oneof themost prevalent lungdiseasesworldwide, runs a perfidious course
with an often long-lasting undiagnosed initial phase. Clinical treatment approaches
for COPD result in repeated clinical visits and extended hospitalization for patients.
This fact, apart from being an economic burden for healthcare infrastructures, drasti-
cally impacts patients’ life quality. To address this issue, today’s healthcare systems
have encouraged the development of personalized solutions through which patients
can receive appropriate medical assistance in an outpatient clinic or a home-care
environment [121]. Recent advances in point-of-caremedical devices have facilitated
the early detection, prevention, and treatment of various diseases [122]. However,
without analytical insight, collected data from medical sensors are merely raw data
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with low clinical value. For instance, in our previous work, a portable biosensor for
managing COPD in home-care environments was presented [123]. The developed
biosensor was capable of characterizing the viscosity of saliva samples for diagnostic
purposes. However, saliva samples’ viscosity properties are one parameter of various
parameters required for COPD detection. As a result, upon viscosity measurements
by the developed biosensor, a sophisticated diagnostic algorithm is required to detect
COPD by concurrent consideration of all essential parameters related to a patient’s
personal and medical background. These demographic parameters include, but are
not limited to, age, gender, weight, cytokine level, pathogen load, and the smok-
ing background of subjects. Therefore, machine learning tools, or more specifically
pattern recognition methods, could make the diagnostic procedure more efficient
by converting collected data from medical sensors into meaningful clinical infor-
mation. Moreover, machine learning can be used for identifying diagnostic links
between symptoms and diseases that have been previously unknown and providing
treatment plans and recommendations to healthcare specialists.

As a result, implementing ML tools is crucial for converting collected raw
data from subjects into meaningful clinical-diagnostic information. Furthermore,
advancedMLanalytics couldmake themanagement ofCOPD inPoint-of-Care appli-
cations more efficient. Nevertheless, drawbacks of cloud-based ML techniques for
medical applications such as data safety, immerse energy consumption, and enormous
computation requirements need to be addressed for this application. To address these
challenges, CMOS-integrated RRAM arrays can be used for the hardware-based
implementation of ML methods. Therefore, a memristive neuromorphic platform is
presented in this work for on-chip recognition of saliva samples of COPD patients
and healthy controls. Two groups of saliva samples, 160 for Healthy Controls (HC)
and 79 for COPD patients, were collected in the frame of a joint research project at
the Research Center Borstel, BioMaterialBank Nord (Borstel, Germany) [124, 125].
Patient materials were collected and anonymized prior to accessibility. The sampling
procedure of the saliva samples was approved by the local ethics committee of the
University of Luebeck under the approval numberAZ-16-167. Figure 4 demonstrates
a hierarchy chart, categorizing the collected saliva samples into extended subgroups
with respect to their diagnosis, gender, and smoking status [124]. As shown in Fig. 5,
analog values of these four attributes were converted into 23 binary bits [gender (1),
smoking status (3), age (9), dielectric permittivity (10)]. Dielectric sensors could be
used to characterize sputum samples collected from patients for early diagnosis of
COPD. The CMOS-based dielectric sensor system used for the real-time monitoring
of sputum samples is described in [126].

The neuromorphic hardware implementation [118] of the developed ANNmodel
was performed with a 4-kbit array of CMOS-integrated RRAM devices based on
amorphousHfO2 developedby IHP [115–117]. The array consists of 64×64memris-
tive cells in a 1-Transistor-1-Resistor (1T-1R) configuration. The two distinct states,
low resistance state (LRS) and high resistance state (HRS), were used for the imple-
mentation. The mean read-out currents are 30.8 mA and 3.2 mA at 0.2 V for LRS
and HRS, respectively. For the deployment of the 10-level model, a mixed-signal
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Fig. 4 Hierarchical categorization of collected saliva samples into extended subgroups with respect
to their diagnosis, gender, and smoking status. Reprinted from [124] (licensed under CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/)

Fig. 5 Conversion of analog attributes of the dataset (gender, smoking status, age, and dielec-
tric properties) into 23 binary bits. Reprinted from [118] (licensed under CC BY 4.0, https://
creativecommons.org/licenses/by/4.0/)

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Fig. 6 ANN topology with
one hidden layer for the
classification of saliva
samples of COPD patients
and HC. Reprinted from
[118] (licensed under
CC BY 4.0, https://
creativecommons.org/
licenses/by/4.0/)

neuromorphic circuit with software-based neurons and hardware synapses was used
[119, 120]. Considering the topology of the ANNmodel (see Fig. 6) with one hidden
layer and one read-out layer with four and two neurons per layer, respectively, 106
parameters (i.e., synaptic weights and biases) were required for connecting the net-
work layers. The resistance states of 1060 memristive devices on a single chip were
set to the HRS or LRS, respective to the pre-trained weights. Every network param-
eter is represented by the combination of ten devices where five devices represent
positive values and five devices represent negative values, respectively. The sum of
ten read-out currents at 0.2 V represents the total value of one synaptic weight. After
successfully implementing pre-trained weights on the hardware, the test subset of
data was used to evaluate the performance of the neuromorphic model for the recog-
nition of COPD and HC samples. In order to recognize the COPD samples with the
mixed-signal approach, the 23 input bits of the test-subset data were applied to the
simulated neurons within the input layer. The output neurons of every subarray are
perceptrons with a sigmoidal activation function, which receive the sum of current
values passing through the connected devices together with a specific bias value.
These current values are normalized to the maximum value of the pre-trained analog
network to guarantee that the sigmoid function is activated with a reasonable range
of values. The output values of the third layer (read-out layer) perceptrons denote
whether a test sample belongs to COPD or HC categories. This hardware realization

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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agrees with the theory of neural networks that the weighted sum of inputs determines
the value of a perceptron in the subsequent layer, as illustrated in Fig. 6.

In summary, the concept of on-chip recognition of saliva samples of COPD
patients using amemristive neuromorphic platformwas studied.A hardware-friendly
artificial neural network model was developed and trained for classifying COPD and
HCsamples using real clinical data. Subsequently, a 10-level conversion of the trained
classificationmodelwas transferred onto amemristive neuromorphic platform for the
on-chip recognition. The memristive chip provided a remarkable accuracy of 89%,
offering an alternative approach to cloud-based methods required for diagnosing
COPD in Point-of-Care applications.

3.2 Stochastic Learning with Binary CMOS-Integrated
RRAM Devices

The inherent stochastic nature of the filament formation and dissolution in RRAM
devices is challenging for many applications, especially if a high numerical precision
is needed (see Sect. 2). On the other hand, different approaches benefit from the
randomness of resistive switching and exploit it explicitly for the technical emulation
of biological information processing. Such networks include noise tolerant stochastic
computing technologies [127], synchronization of oscillatory neurons to emulate
neuronal coherence [113, 128] as described in Sect. 4.2, stochastic switching neurons
[129, 130] and stochastic learning rules realized with single binary synapses [119,
120, 131–133], as well as compounds of several binary devices as one synapse [85,
129, 131, 133].

The stochastic learning algorithm [119, 120] described in this section utilizes the
stochastic nature of binary fully CMOS-integrated 4 kbit RRAM arrays [115–117]
in a 1-transistor-1-resistor (1T-1R) configuration, the same technology as used in
Sect. 3.1, in a stochastic artificial neural network (StochANN) to learn the MNIST
benchmark [99]. In that way, it is shown that the proposed StochANN is able to pro-
cess analog information with binary memory cells. The devices are composed of a
HfO2−x/TiO2−y bi-layer sandwiched between TiN electrodes. They can be switched
between two distinct resistance levels, i.e., HRS and LRS. As an initial step, an
electro-forming process is required. This is reliably done by the incremental step
pulse with verify algorithm (ISPVA) [134]. The electrical device properties depend
on the crystalline phase of the HfO2−x [120, 135]. The switching probability for
polycrystalline and amorphous HfO2−x films is shown in Fig. 7a, b and c, d, respec-
tively. The device-to-device (D2D) variability of 128 1T-1R devices is therefore
determined by applying single voltage pulses in the set [Fig. 7a, c] and reset [Fig.
7b, d] regime, i.e., for the transition from HRS to LRS and vice versa. To obtain
the measured data shown as dots in Fig. 7, resistance states were measured with a
read-out voltage of 0.2 V after applying a positive or negative voltage pulse for set
and reset transition, respectively. A current of 20 mA has to be exceeded to count
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Fig. 7 Switching probability of the usedRRAMdevices dependent on the applied voltage amplitude
of 10 ms pulses. Dots represent measured data, while the solid lines are fits with Eq. 1. The fit
parameters d and V0, as well as the switching window �Vsw are also depicted. In a, b, the set and
reset behavior of the polycrystalline devices are shown, respectively, while in c, d, the set and reset
behavior of the amorphous devices are depicted, respectively. For each technology, 128 devices
were measured. Reprinted from [120] (licensed under CC BY 4.0, https://creativecommons.org/
licenses/by/4.0/)

as an effective set operation, while the current has to be lower than 5 mA to count
as a successful reset process. All pulses had a length of 10 ms. The cycle-to-cycle
(C2C) variability shows no significant deviation from the D2D variability in similar
devices [136]. Furthermore, the switching voltages determined here do not depend
on the devices’ position within the 4 kbit array. Thus, taking the D2D variability
into account for designing the learning rule is reasonable. The switching probability
dependence on an applied voltage pulse can be described by a Poisson distribution
taking voltage amplitude and pulse width into account [113, 119]. The distribution
function for N voltage pulses (neural activity level) with a voltage amplitude V can
be expressed as [113, 120]

https://creativecommons.org/licenses/by/4.0/
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fN = 1

1 + e−d(V−Vo)
. (1)

Here, V0 denotes the voltage at which the probability fN is equal to 0.5, and d is a
measure of the distribution functions slope and, therefore, of the switching variability.
The larger the absolute value of d, the smaller the switching window �Vsw in which
a stochastic encoding of analog data is possible. The switching window is defined
as the voltage interval in which the switching probability fN is between 2 and 98 %.
Fitting themeasuredD2D variability with Eq. 1 leads to the solid line in Fig. 7 as well
as to the depicted d and �Vsw values. In summary, �Vsw is smaller for amorphous
HfO2−x than for polycrystalline HfO2−x devices due to the grain boundaries’ impact
on the D2D variability and a more homogeneous defect distribution in amorphous
hafnia films [135, 137]. Furthermore, �Vsw is smaller in the set transition compared
to the reset transition for both technologies.

To emulate synaptic plasticity, the activity A of a neuron is encoded in voltage
pulses with amplitudes V within the switching windows:

V = V1 + A · �V, (2)

with

A = N

�t
. (3)

Here, N is the number of action potentials arriving at a neuron in the time inter-
val �t , and V1 is the lower bound of the switching window. Exploiting the whole
switching window to map analog activity, i.e., analog data, to the stochastic nature
of the switching event is possible by a proper choice of �V . In the following, the
StochANN utilizing this local learning rule is described, and the influence of the
switching window size on the learning performance is shown.

TheMNIST benchmark [99] of static visual patterns is used within this work. The
learning data set contains 60,000 images of handwritten digits from 250 different
writers. Each image consists of 28 · 28 greyscale pixels with 256-levels. Some rep-
resentations of the ten included patterns (i.e., digits from zero to nine) are shown in
Fig. 8. A test data set contains additional 10,000 images, which can be used to deter-
mine classification accuracy. For the StochANN [119, 120] described in this section,
averaged images are used, as shown in Fig. 9. These are obtained by calculating the
average greyscale values of 100 randomly chosen representations of each pattern. For
learning, the pixel intensities of every image aremapped to the interval [0,1] by divid-
ing the values of every pixel by the maximum pixel value of the respective image.
Learning takes place in a supervised manner in a time-independent StochANN. The
network topology is illustrated in Fig. 9. Each pixel has one corresponding input neu-
ron connected to every of the output neurons (one for each pattern sketched here) in
a two-layer feed-forward configuration similar to earlier approaches [89–93]. Each
connection is made by a binary stochastic synapse. The input neurons map the pixel
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Fig. 8 Examples of MNIST images. Each row shows different representations of one pattern

intensities into voltage pulses, inducing a switching event with respective probability
for the connections to the dedicated output neuron. In that way, the trained synaptic
connections, i.e., memristive devices, form receptive fields of the output neurons.
Either set or reset transitions of both technologies are used for learning. If the set
transition is used for learning, reset pulses are applied to each synaptic device prior to
execute the learning rule corresponding to a low probability psat . Accordingly, a low
probability set pulse is used if the reset transition is exploited for learning. Thus, sat-
uration effects are avoided. In that way, all training images can be used several times
to train the network. It should be noted that the number of output neurons can vary
for two reasons. First, if only a subset of the patterns is learned, fewer output neurons
are necessary (one for each pattern). Second, each pattern can be learned by several
output neurons to increase the network performance. The StochANN performance
is evaluated experimentally with a mixed-signal circuit emulating the synapses in
hardware using the fully CMOS-integrated RRAM arrays and neurons in software.
Details about the circuit design can be found in [120]. Moreover, the network is sim-
ulated without taking device variabilities and imperfections into account. Here, the
stochastic learning rule is simulated by generating a random number ri, j uniformly
distributed over the interval (0, 1) for every pixel j of every learning image i and
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Fig. 9 Schematic visualization of the network structure (center) with 784 input neurons and 10
output neurons connected with memristive devices as binary synaptic weights. The learning data
(left top) and the test data (left bottom) are sketched as well as the output neurons activation function
(right). Reprinted from [120] (licensed under CC BY 4.0, https://creativecommons.org/licenses/
by/4.0/)

the respective synaptic weight wi, j is set to 1 if the pixel intensity is larger than ri, j .
The simulations serve to determine the maximum possible network performance by
omitting device imperfections. Furthermore, the number of available devices limits
the experimentally realized network size. Thus, larger networks can be simulated to
compare the stochastic learning algorithm to state-of-art networks. After learning,
the classification accuracy can be evaluated by applying test images to the network.
In experiments, 50 randomly chosen images of each pattern are used, while all 10,000
test images are used in simulations. Therefore, the pixel intensities are binarized. For
each test image, a threshold value proportional to a global constant c and the mean
pixel intensity of that image is determined. Pixel intensities, which do not exceed
the threshold, are set to 0, and the others are set to 1. The larger c, the fewer pixels
are active, as shown in Fig. 9. Every test image is shown once to the network by the
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https://creativecommons.org/licenses/by/4.0/


Neuromorphic Circuits with Redox-Based Memristive Devices 61

input neurons, which induce a 0.2 V read-out pulse for pixel values of 1. The output
neurons are modeled as perceptrons with an activation function

fout = 1 − e−k·Aout,i,m

1 + e−k·Aout,i,m
. (4)

Here, k is a positive constant that defines the slope, as shown in Fig. 9 and Aout,i,m

is the normalized activity of the input neurons for the test image i weighted by the
synaptic connections w j,m of input neurons j to the output neuron m according to

Aout,i,m = 1

784
·
784∑

j=1

pi, j,bin · w j,m, (5)

where pi, j,bin is the binarized intensity value of pixel j being part of image i . The
weights w j,m are determined as logical 1 if the read current exceeds 10 mA and the
set transition is used for learning. If the reset transition is used, w j,m is assigned a
logical 0 if the current is larger than 10 mA. Thus, Eq. 5 is valid for both cases. The
output neuron, which receptive field re-samples the test image best, has the highest
activation Aout,i,m , and associates the test image to the pattern it learned. If several
output neurons are used to learn the same pattern, the sums of all activation functions
belonging together are evaluated. A classification accuracy, named recognition rate
in the following, is determined by calculating the percentage of correctly assigned
test images.

Two MNIST subsets were used first to compare experimental results with sim-
ulations. One subset contains the digits “0”, “1” and “9”, while the second subset
consists of “0”, “3” and “8”. Thus, the patterns differ more from one another in the
first set compared to the second set, where the patterns have more pixels in common.
In total, 3 · 784 = 2, 352 individual synaptic connections are needed. This num-
ber of functional devices is selected from each type (polycrystalline or amorphous
devices) of the 4 kbit chips, and they are randomly assigned to the output neurons.
The parameters c = 4 (binarization of test images), k = 5 (slope of output neurons
activation function in Eq. 4) and psat = 35% (for to avoid saturation of weights) were
optimized in simulations. Here, recognition rates (mean value and standard devia-
tion) of 84.5% (±4.6%) for the subset {0, 3, 8}, and 87.0% (±4.8%) for the subset
{0, 1, 9} were determined with 100 simulation runs for each subset with five learn-
ing epochs each. It should be emphasized here that the algorithm converges within
these five training epochs. Combining the results of both subsets, a recognition rate
of 85.7% (±4.9%) is obtained. This is plotted in Fig. 10a as dashed line (mean
value) and grey area (standard deviation). Receptive fields trained experimentally
are shown in Fig. 11 for both device technologies, both subsets, and both state tran-
sitions used for learning. It is obvious that both types of devices and both transitions
can be used within the network to learn the respective patterns in hardware. Further-
more, the switching windows size �Vsw affects the learned patterns. In particular,
the smallest switching window corresponding to the set transition of the amorphous
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Fig. 10 Recognition rates of the StochANN. a Combined experimental results for MNIST subsets
{0, 1, 9} and {0, 3, 8}.Mean values and standard deviations of five experimental runs for each pattern
(i.e., ten runs in total for each data point) are shown as black dots while standard deviations are given
as error bars. Simulation results (100 runs for each subset) are given as dashed line (mean value) and
gray area (standard deviation). The abbreviations “poly” and “am” denote the polycrystalline and
the amorphous HfO2−x -based devices, and “set” and “reset” denote the transition used to emulate
stochastic plasticity. b simulation results for the whole MNIST dataset are shown (mean values and
standard deviation of five runswithfive learning epochs each). These results are achievedwith afixed
activation function (black squares) and an adaptive activation function (green circles) of the output
neurons. The recognition rates with directly written receptive fields are also shown for comparison
(blue triangles). Reprinted from [120] (licensed under CC BY 4.0, https://creativecommons.org/
licenses/by/4.0/)
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Fig. 11 Receptive fields of learned patterns in hardware. The read-out currents of the RRAM
devices measured with 0.2 V are shown. In a–d, the used patterns are {0, 3, 8} learned with the set
transition of polycrystalline devices a, the set transition of amorphous devices b, the reset transition
of polycrystalline devices c, and the reset transition of amorphous devices d. In e–h, the used
patterns are {0, 1, 9} learned with the set transition of polycrystalline devices e, the set transition
of amorphous devices f, the reset transition of polycrystalline devices g, and the reset transition of
amorphous devices h. Read-out currents are encoded in the pixel color as specified in i. Reprinted
from [120] (licensed under CC BY 4.0, https://creativecommons.org/licenses/by/4.0/)

devices leads to receptive fields, which are more challenging to differentiate visually
[Fig. 11b, f] compared to the largest switching window belonging to the reset transi-
tion of the polycrystalline devices [Fig. 11c, g]. However, the determined recognition
rates show deviations from the simplified assumption that an increased switching
window leads to better classification accuracy. In Fig. 10a, the recognition rates for
both technologies and both state transitions are show. Each data point denotes com-
bined mean values and standard deviations for five experimental runs of each subset
(i.e., ten experimental runs in total for each data point). On the x-axis, “am” denotes
amorphous and “poly” denotes polycrystalline HfO2−x devices. Furthermore, �Vsw

is given in Fig. 10a. In summary, the medium-sized switching windows correspond-
ing to the reset transition of amorphous HfO2−x devices and the set transition of
polycrystalline HfO2−x devices show performances within the error margin of the
simulations. Thus, the simulations accurately reproduce the experimental results. A
larger switchingwindow for the reset transition of the polycrystallineHfO2−x devices
and a narrower switching window for the set transition of the amorphous HfO2−x

https://creativecommons.org/licenses/by/4.0/
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devices, however, result in worse recognition performance. Thus, evidence is shown
that device variability has an impact on network performance. In particular, the size
of the switching window must not be too small to optimize the stochastic synapses
in the proposed StochANN. The reason for the worse accuracy obtained with the
largest �Vsw has to be evaluated in the future.

The network performance is tested with all ten patterns in simulations as well. All
results were obtained with five learning epochs in five simulation runs. The recogni-
tion rates are summarized in Fig. 10b. Black dots show the StochANN performance
for a fixed slope k = 5 of the output neurons’ activation function. Recognition rates
were determined as 53.3% (±3.0%) for ten output neurons (i.e., one for each pattern)
61.6% (±1.9%) for 100 output neurons and 62.9% (±0.7%) for 300 output neurons.
An increase in learning epochs or the number of output neurons does not lead to any
improvement. Furthermore, these results are compared to patterns written directly
into the synaptic states without any learning algorithm involved. For this purpose, the
input patterns were binarized using a fixed threshold�bin . The synaptic weights were
set to 1 if the corresponding pixel intensity of the input images were larger than the
threshold. As shown by the blue triangles in Fig. 10b, a 75.7% recognition rate was
obtained for a fixed �bin of 0.26, which was optimized in simulations. No standard
deviation can be denoted since no stochasticity is involved but only one deterministic
prototype of each pattern is stored. Thus, binarizing the input images and writing
them directly into the receptive fields improves the performance compared to the
stochastic learning rule. However, a thorough optimization of �bin for the specific
dataset has to be performed, which becomes more tedious as the number of different
input patterns increases. Moreover, an adaptive slope of the output neurons’ activa-
tion function in combination with the stochastic learning rule leads to even higher
recognition rates [green squares in Fig. 10b]. Here, the slope k is adapted with

km = k0 − �k ·

784∑
j=1

w j,m

784
, (6)

where k0 is the base value, and�k is a positive constant weighted by the total strength
of the synaptic connections. Thus, the slope is steeper for neurons that have learned
patterns with less active pixels, leading to a stronger activation of those neurons for
less input strength, as can be seen in Fig. 9. The slope adaptation only depends on
the final weights stored in the synaptic connection. No adaptation during learning is
necessary. The adaptive slope has similar functionality to variable threshold values
for the output neurons reported for other pattern recognition networks [89, 90, 92,
93, 138, 139]. Here, the adaptive thresholds are essential to obtain a high recognition
performance by emulating homeostasis. With k0 = 5 and �k = 6.8, a classification
accuracy of 68.8% (±1.2%), 78.3% (±1.2%) and 78.5% (±0.2%) were achieved
for 10, 100, and 300 output neurons, respectively. This shows that the stochastic
learning rule slightly outperforms the directly written receptive fields for more than
100 neurons in the output layer. This can be explained by the fact that only one
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prototype of each pattern exists for directly written patterns, while variations of the
prototypes exist in the learned receptive fields.

Using more complex time-independent networks performing supervised learning
leads to recognition rates > 98.5% for SNNs [140, 141] and 99.87% for a thor-
oughly optimized CNN [142] and thus comparable to human performance estimated
to be approx. 99.8% [143]. Using unsupervised learning in time-dependent neural
networks is reported to achieve 93.5%with 300 output neurons [90] as well as 91.9%
and 95.0% with 1600 and 6400 output neurons and the same amount of inhibitory
neurons [138]. The latter approach was extended in Ref. [95] to a so-called lattice
map (LM)-SNN leading to an accuracy of 94.07% for 1600 excitatory and inhibitory
neurons, respectively. For a broad overview of different time-dependent and time-
independent networks using supervised or unsupervised learningmethods, the reader
is referred to the overwhelming literature [98, 138, 142, 144–146]. All results named
so far were obtained in simulations where only in [90] memristive devices were mod-
eled to be used as synaptic connections. A fully hardware-implemented CNN based
on multilevel RRAM devices can achieve recognition rates of 96.2% [147]. Here,
a five-layer network is trained in software in a supervised manner, and the weights
are subsequently transferred to eight 128 × 16 1T-1R arrays using two devices as
one synapse to obtain positive and negative weights. Moreover, re-training of the
last feature extraction layer was done in hardware. Another approach, in which two
analog RRAM devices are used as one hardware synapse together with software
neurons, reaches an accuracy of 91.7% for a re-scaled MNIST dataset of 8 · 8 pixel
size. Here, a three-layer network using one array of 128 × 64 1T-1R devices can
be utilized for learning directly in hardware using a supervised learning scheme
[148]. Simulations of an extended network show a recognition rate of 97.3% taking
device variability into account. A neuromorphic processor implementing a multi-
layer SNN with static random access memory (SRAM) allowing on-line supervised
learning reaches a recognition accuracy of 97.83% [149]. Furthermore, hardware
acceleration of DNN inference with pre-trained weights transferred to PCM devices
is reported to lead to a recognition rate of 98.3% [150]. Another integrated circuit
utilizes memristive devices as synaptic connections with the possibility of on-line
learning has also been published [151].

The StochANN performance shown here is promising for such a simple network
structure but has to be improved to compete with other reported networks. One big
drawback of the proposed concept is that only the averaged pattern can be learned.
Transfer the supervised learning rule into an unsupervised learning approach can
potentially help to extract more prototypes of each pattern [89, 90, 93] without the
need for supervised learningby computing andgradually improving an error function,
as done in classical backpropagation algorithms [77, 80, 81]. Furthermore, using
several binary devices as one synapse can help to improve the network performance
[85, 129, 131, 133]. The advantage of the proposed network is that learning can be
done directly in hardware with a mature technology using fully CMOS-integrated
RRAM devices as synapses.
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4 Time-Dependent Neural Networks

In this section, examples of time-dependent memristive networks are covered. In
Sect. 4.1, an SNNbased on analogmemristive devices performing bio-inspired learn-
ing and pattern recognition is presented [93]. Simulations reproducing real device
behavior on learning the MNIST benchmark are provided while the impact of device
variability and yield is investigated. A mixed-signal circuit implementation using
real crossbar-integrated double barrier memristive devices (DBMDs) [152] to learn
basal patterns experimentally is furthermore shown [94]. In Sect. 4.2, examples for
oscillator computing with memristive devices are provided. According to Fig. 2,
these networks show the highest degree of biological inspiration and, therefore, the
highest amount of cognitive performance is expected. The oscillator-based com-
puting scheme shown below emulates perception by transient synchronization of
memristively coupled oscillators. Thereby, it establishes a certain analogy to biology
to solve the binding problem [113]. The influence of the switching dynamics of two
types of memristive devices on the synchronization of oscillators is, furthermore,
investigated, and device requirements for oscillatory computing are deduced.

4.1 Bio-Inspired Learning with Analog Memristive Devices

In this section, a time-dependent neural network utilizing analog memristive devices
to emulate bio-inspired learning for a pattern recognition task is presented. The net-
work performance is investigated by simulations incorporating real device behavior
[93] and by the realization of a mixed-signal circuit using real crossbar-integrated
devices [94]. Here, LTP andLTDare induced by replicating theHebbian learning rule
described in Sect. 1 for unsupervised bio-inspired learning. Hebbian learning was
already realized a decade ago with single memristive devices by emulating STDP
[153, 154] as well as LTP and LTD [155].

The used devices are so-called double barrier memristive devices (DBMDs) with
the layer sequence Au/NbxOy(2.5nm)/Al2O3(1.3 nm)/Nb [152] which are explained
in detail in Chap.3. Here, memristive switching is reported to take place by field-
driven oxygen ion movement within NbxOy, modulating the effective Schottky bar-
rier height and the effective tunnelingwidth of theAl2O3 [152, 156]. Thus, a homoge-
neous interface-based switching leading to a gradual resistance change is performed.
The amount of resistance change depends on the applied voltage amplitude and time.
A mathematical description of experimentally determined switching data is given by
the memristive plasticity model of Ziegler et al. [24]. This model is compatible with
advanced biophysical plasticity models that can fit experimental data on STDP, while
it is also suitable to describe plasticity emulation with memristive devices. In that
way, a behavioral model is obtained, which can be used for network-level simulations
to explore how the modeled devices can be utilized to emulate Hebbian plasticity in
trainable neuromorphic networks. Therefore, the degree of conductance change, i.e.,
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the change of synaptic weight ω, is linked to the applied voltage pulses. The weight
change is given by [24]

dω

dt
= β (ω) ω(t)

(
1 − 1

ωmax
ω(t)

)
. (7)

Here, β is the weight-dependent learning rate, and ωmax is the maximum achievable
weight. The switching dynamics of memristive devices are expressed in β, which
depends not only on the electrical stimuli but also on the present conductance state.
Thus β depends on the switching mechanism of the memristive device and can
lead to various learning behaviors [24, 157]. The learning rate can be different for
potentiation βp and depression βd . Furthermore, the synaptic weight ω represents
the conductance G of a memristive device. Since the conductance change usually
depends on the voltage pulse amplitude �V as well as the width �t and the number
of pulses n, the learning rates βp and βd are also modeled to be dependent on these
parameters [24]:

βp (G, n,�t,�V ) = kpα(�V )λ(�t)(1 − γG(n − 1)) (8)

βd (G, n,�t,�V ) = −kdα(�V )λ(�t)γG(n − 1), (9)

where kp, kd , and γ are positive constants, whileα and λ account for the non-linearity
of the memristive devices’ switching process.

Figure 12 shows the plasticity measurements (conductance vs. pulse number)
of DBMDs investigated with voltage pulses of different amplitude and widths on
86 single devices. Black dots denote the average data from 86 individual devices,
while error bars denote the standard deviation. Red solid lines show a replication
with the introduced plasticity model. Model parameters are given in the respective
original paper [93]. The gradual conductancemodulation is clearly visible in Fig. 12a.
Here, 1000 equivalent positive voltage pulses inducing potentiation and subsequent
1000 equivalent negative voltage pulses inducing depression were applied to the
devices, as illustrated in the inset. A pulse duration of�t = 1 mswas chosen together
with �V = 3.9 V and �V = −2.5 V for potentiation and depression, respectively.
Device conductance was read out by applying a voltage of 0.48 V, i.e., well below the
threshold to change the device state [152], after every 100 potentiation or depression
pulses. The data are depicted relative to the average maximum conductance Gmax =
100 nS of all devices after 1000 potentiation pulses. To determine the variations of
the device conductance in dependency on the pulse amplitude andwidth, potentiation
pulses with�V between 2.4 V and 3.7 V and a fixed width of 1 ms [Fig. 12b] and�t
ranging from 1 ms to 30 ms and a fixed amplitude of 3.9 V [Fig. 12c] were used. The
data points in both figures show device conductance after 1000 pulses. The impact
of depression pulses is shown in Fig. 12d for 1000 voltage pulses of 30 ms length,
and �V between -1.4 V and -2.6 V applied to previously fully potentiated devices.
An asymmetry between positive and negative voltages is obvious. Moreover, the
device conductance is nearly unaffected for positive voltages of 2.4 V and below
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Fig. 12 Plasticity measurements of DBMDs: Mean values from 86 individual devices are given
as black dots, while error bars denote the standard deviation. Conductances are normalized with
the average maximum conductance Gmax achieved with 1000 potentiation pulses of �V = 3.9 V
amplitude and �t = 1 ms width. Fits with the plasticity model are given as red solid lines. a
Typical conductance modulation with 1000 potentiation pulses (�V = 3.9 V,�t = 1 ms) and 1000
depression pulses (�V = -2.5 V, �t = 1 ms) is shown. Each data point depicts the normalized
conductance measured after 100 pulses. The conductance change after 1000 potentiation pulses
with varying pulse amplitudes and widths is shown in b and c, respectively. The conductance
change with 1000 depression pulses of different amplitude is shown in d. Reprinted from [93]
(licensed under CC BY 4.0, https://creativecommons.org/licenses/by/4.0/)

as well as for negative voltages with an absolute value of 1.4 V or below. By using
potentiation pulses with �V = 3.9 V, however, the conductance can be increased
by two orders of magnitude, which can be fully turned back with �V = −2.6 V. A
thorough analysis of the data is given in [93].

The measured data incorporated in the plasticity model can now be used to sim-
ulate a neuromorphic network capable of learning visual patterns by adjusting the
synaptic weights emulated by DBMDs. TheMNIST dataset [99] of handwritten dig-
its, which is introduced in Sect. 3.2, shall be learned. The network operates similarly
as networks reported in other works [89–92]. The two-layer feedforward network
is schematically shown in Fig. 13 [93]. Here, each input neuron (blue circles) is
connected to every output neuron (red circles) by DBMDs (symbols of memristive
devices) arranged in a crossbar array. Every input neuron stochastically encodes the
intensity of one pixel into voltages pulses [91–93]. Therefore, the pixel intensities are
normalized to the interval (−1, 1). The absolute values of the normalized intensities
denote the probability of an input voltage pulse generation, while the sign stands
for the voltage polarity. In that way, every input neuron either generates no spike or
voltages pulses of +0.6 V or -0.6 V amplitude, both not affecting the device conduc-
tance by themselves. The currents flowing to the output neurons depend not only on
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Fig. 13 Schematic of the simulated neural network. Reprinted from [93] (licensed under CC BY
4.0, https://creativecommons.org/licenses/by/4.0/)

the voltage pulse amplitudes but also on the conductance of the devices. The leaky
integrate-and-fire (LIF) output neurons [33, 158] integrate the incoming stimuli until
a certain threshold is reached [89]. When an output neuron reaches its threshold, a
voltage pulse consisting of a positive part with �V = 2.9 V and a negative part with
�V = −2.3 V. This post-synaptic pulse overlaps with the pre-synaptic pulses and
changes the conductance of memristive devices connected to the respective output
neuron. If a positive pre-synaptic pulse superimposes with the post-synaptic pulse,
a potentiation takes place for the positive part (Vsum = 3.5 V) while the negative
part does not affect the memristive state significantly (Vsum = −1.7 V). Vice versa,
a net depression takes place when a negative input pulse overlaps with an output
pulse (Vsum = 2.3 V and Vsum = −2.9 V, respectively). If no input pulse occurs, the
post-synaptic pulse’s voltage amplitudes alone do not significantly impact device
conductance. Thus, input pixels with a strong intensity lead to positive input pulses,
which, superimposed with induced output pulses, increase the device conductance.
Pixels with low intensity induce negative input pulses, which lead to decreased con-
ductance if an output spike simultaneously occurs. Thus, prototypes of the patterns
are stored in the resistance states of the memristive devices. All devices connected
to an output neuron are building the receptive field of this specific neuron. In that
way, unsupervised associative learning based on local Hebbian plasticity is realized.
Essential for network performance is, furthermore, an inhibitory coupling network
for the output neurons implementing a winner-takes-it-all (WTA) mechanism, in
which the first spiking neuron resets the integration of all other neurons [89]. More-
over, an adapting individual threshold is implemented for the output neurons to allow
that all output neurons participate equivalently in learning. This mimics homeostasis
in biological systems [89].

https://creativecommons.org/licenses/by/4.0/
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Fig. 14 Obtained receptive fields after unsupervised learning with 50 output neurons. In the gray-
scale used to visualize device conductance white indicates maximum device conductance (strong
synaptic weight), while black represents minimum conductance values (weak synaptic weight) of
the memristive devices. Reprinted from [93] (licensed under CC BY 4.0, https://creativecommons.
org/licenses/by/4.0/)

After learning, the network can be used to classify unknown images. Therefore,
the output neuron, which receptive field matches the input image best, creates an
output pulse. To assign every output neuron to its learned pattern, a small amount of
pre-classified images is applied to the network and it is evaluated forwhich pattern the
output neurons get activated. Afterward, the network performance can be evaluated
by applying all 10,000 images from the MNIST test dataset to the network and
calculating recognition accuracy by determining the percentage of correctly assigned
patterns. Therefore, only the pre-synaptic pulses to encode the images are used,
and the spiking events of the output neurons are tracked while post-synaptic pulse
generation is suppressed to stop changing the device states. For 10, 20, 50, and
100 output neurons, recognition rates of 65%, 70%, 77%, and 82%, respectively,
were determined. These rates are in good agreement with similar networks [89–92].
A typical set of learned receptive fields obtained in a simulation with 50 output
neurons is shown in Fig. 14. It can be seen that the implemented network using the
Hebbian learning scheme is able to learn different prototypes of all ten patterns (digits
from zero to nine). The obtained performance is significantly lower than those from
other spiking networks, as described in Sect. 3.2. However, network requirements
for using memristive devices in SNNs are examined in this work, while improving
pattern recognition computing schemes was not intended.

The results presented so far were generated without taking device variability
into account. Now, the impact of different degrees of D2D and C2C variability is
investigated [93]. Therefore, networks with ten output neurons were trained with
three iterations of the whole MNIST learning dataset. Results are shown in Fig.
15(a,b), in which every data point was determined as the average of three simulation
runs. The findings are then compared in Fig. 15c to the measured variability of real

https://creativecommons.org/licenses/by/4.0/
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Fig. 15 Impact of device variability, i.e., variability of local learning rate of individual devices, on
network performance. Device-to-device (D2D) and cycle-to-cycle (C2C) variability are depicted
as standard deviation of Gaussian distributions. Each data point represents the mean value of three
simulation runs. aD2D variability bC2C variability for a D2D variability of 0 % (black dots), 40 %
(red squares) and 80% (blue diamonds) c Experimentally determinedD2Dvariation for potentiation
with �V = 3.9 V and �t = 1 ms. Each data point shows the normalized mean conductance of 86
devices after 100 potentiation pulses. The red, blue, and gray lines indicate the range of learning
rates with, 40%, 80%, and 100%D2D variability, respectively. Reprinted from [93] (licensed under
CC BY 4.0, https://creativecommons.org/licenses/by/4.0/)

https://creativecommons.org/licenses/by/4.0/
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DBMDs. To model D2D variability, the learning rates of all devices were varied with
Gaussian distributions [see inset of Fig. 15a] initially in every simulation run. As
depicted in Fig. 15a, a standard deviation of up to 50% does not affect the recognition
rate, while a further increase in variability slightly influences the performance. The
C2C variability was modeled by varying the individual devices’ learning rate for
every applied image with a Gaussian distribution. Figure 15b (black dots) shows
that a C2C variability of up to 200% does not affect the network performance. A
combination of D2D and C2C variability, the most realistic scenario, is given in
Fig. 15b with red squares and blue diamonds. Robust performance is achieved for
a C2C variability of 100% combined with a D2D variability of 80%. Furthermore,
the numerical investigation provides evidence that the most crucial performance
losses result from a constant D2D variability since this effect does not average out
in many learning iterations like it is the case for C2C variability. To estimate if
the D2D variability of DBMDs does allow to use them as artificial synapses in the
investigated network, the measured D2D variability is compared to the theoretically
obtained boundaries. Figure 15c shows experimentally recorded device conductance
of 86 individual devices after every 100th potentiation pulse with amplitudes of 3.9 V
and 1 ms normalized by the highest recorded conductance Gmax,total . Furthermore,
the solid lines in Fig. 15c indicate the variation range of learning rates with 40%,
80%, and 100% D2D variability. Thus, the experimentally obtained D2D variability
lies within the required variation interval. Moreover, in the original paper [93], the
experimentally obtained yield, i.e., the percentage of functional devices, is shown to
be approx. 98%, which does not influence the network performance significantly. In
conclusion, evidence is provided that DBMDs are attractive candidates to be used as
artificial synapses in neuromorphic circuits. In particular, the gradual conductance
change under voltage pulsing, as well as the variability and yield of such real devices
are believed to be suitable for the investigated network and learning rule.

The possibility of using DBMDs as artificial synapses has also been shown exper-
imentally [94]. Here, a two-layer network, like described above, has been imple-
mented in amixed-signal-circuit. The synaptic connectionswere emulatedwith a real
crossbar array containing 16 · 16 = 256 devices. Due to the high I -V non-linearity
and the diode-like character of the DBMDs, no additional selector devices are needed
to avoid the sneak path problem (see Sect. 2 and Chap.3). The I -V characteristics
of crossbar integrated devices were proven to be similar to single devices [94], as it
is also shown in Chap.3. The neurons were emulated in software. During learning,
the conductances measured with a pre-synaptic pulse of 0.9 V amplitude were used
to compute the current flowing to the output neurons. If a post-synaptic spike is
triggered, potentiation and depression pulses with�V = 3.6 V and�t = 100 ms as
well as �V = −1.1 V and �t = 300 ms, respectively, were used. In that way, the
overlapping of pre- and post-synaptic pulseswas not realized, but the potentiation and
depression took place according to the Hebbian learning scheme explained above.
This deviation from simulations was needed because the simple circuit design did
not allow for real parallel data processing [94]. However, the work aimed to provide
a proof of principle that DBMDs can be used in a crossbar configuration without the
need for additional selector devices as artificial synapses in neuromorphic networks.

http://dx.doi.org/https://doi.org/10.1007/978-3-031-36705-2_2
http://dx.doi.org/https://doi.org/10.1007/978-3-031-36705-2_2
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Fig. 16 Experimental
results a Used training data b
Obtained receptive fields
during unsupervised learning
with five output neurons. The
pixel color indicates the
memristive devices’
resistance values (synaptic
weights). Reprinted from
[94] (licensed under CC BY
4.0, https://
creativecommons.org/
licenses/by/4.0/)

Figure 16a shows the simple 6 · 6 pixel pattern that the network shall learn. Figure
16b shows the developing receptive fields for five output neurons. Every pixel rep-
resents the resistance of one memristive device emulating the synaptic connection
between one input and one output neuron. Initially, the resistances encoded in the
pixel color are randomly distributed. After using 22,000 learning images in total, all
three patterns are learned. Thus, the realization of unsupervised bio-inspired learn-
ing was possible with real DBMDs arranged in a crossbar structure thanks to the
high I -V non-linearity and the diode-like character, as well as due to no required
initial electro-forming step. As shown in the simulations above, the presented system
can, in principle, cope with more complex tasks. However, a much larger amount of
memristive cells is necessary for that. Due to the high resistances of DBMDs (even
in LRS) and the several orders of magnitude lower wiring resistance (≈ 100 
 for
an individual wire with the size 1100 · 40 · 0.5 mm3) in the present crossbar array,
larger arrays are believed to work as well.

4.2 Oscillatory Computing

Biological information processing relies heavily on nonlinear dynamics [36, 109].
This enables the integration of the multitude of information in an enormous and
massively parallel network of neurons divided into functionally specialized regions
such as the visual cortex, auditory cortex, or dorsolateral prefrontal cortex. Each
of these regions participates as a context-dependent, self-organized, and transient
subnetwork [36, 108]. Even if the underlying mechanisms are only partially under-
stood, the interaction between dynamics and topology has been identified as one of
the essential building blocks of information processing in the brain in recent years
[109]. In the current understanding, it is assumed that information is encoded into
coherent states by temporally correlated neural activity patterns [110]. This concept
offers, particularly, an elegant explanation for the binding problem - the question

https://creativecommons.org/licenses/by/4.0/
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of the mechanism of sensory integration, which allows our brain to construct uni-
form perceptions from the multitude of sensory information. First, evidence of these
concepts could have been gathered from experiments with sensorimotor networks
[111]. More recent studies have shown the universality of these concepts for the
entire brain [110]. Recently, oscillators coupled by memristive devices have been
shown to emulate this kind of information processing to some extent [112, 113].

In this section, we report on oscillator computing with memristive devices. We
show how the dynamics of oscillator networks, coupled by memristive devices, is
affected by the resistance of these devices. Therefore, important requirements for
memristive devices are discussed as well as applications with the possibility to open
up new pathways towards the construction of cognitive electronics.

4.2.1 Oscillator Computing with Memristive Connectivity

From studies of the thalamocortical system, Hoppensteadt and Izhikevich proposed a
computational scheme based on oscillators with different frequencies that are weakly
coupled to an externally changed medium, causing dynamic connectivity [159]. In
their model, information is encoded in the oscillators’ phase and/or frequency syn-
chrony. The weak coupling, thereby, allows a dynamic change of their connectivity
patterns depending on an external signal. A similar approach follows the idea of
memristive coupled oscillator structures [112, 113], which will be explained in the
following.

Figure 17 shows the model of two memristively coupled oscillators. Both oscil-
lators are initially oscillating in their own frequencies fi and f j [Fig. 17a]. As long
as their coupling is weak, they are not affecting each other. However, if the coupling
strength between the oscillators increases, they start to interfere and synchronize
in frequency and phase for sufficient high coupling strengths [Fig. 17b]. However,
if the coupling strength is decreased thereafter, the oscillators will desynchronize
again due to their different frequencies. This model can be realized with two self-
sustained van der Pol oscillators with resistive coupling, as shown in Fig. 17c [112],
i.e., via the conductance gm of memristive devices. While in the following the model
of memristive coupled oscillators will be discussed in the framework of van der
Pol oscillators, any other type of oscillator may also be suitable [160]. The oscilla-
tor system shown in Fig. 17 can be described by the following set of second-order
dimensionless nonlinear equations:

d2y1
dt2

= −α
(
1 − y21

) dy1
dt

− β
(y1 + γ1)

2

γ1
= gm(x, t)

(
dy2
dt
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dt

)
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(
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Fig. 17 a, b Concept of memristively coupled oscillators. c Depending on the coupling strength
gm (conductance of the memristive device) a frequency and phase synchronization of the oscillators
occurs, as seen from the time course of the oscillator voltage y1 (y2) in the lower graph

Here, β, γ , and α are positive constants that define the uncoupled oscillators’ damp-
ing, non-linearity, and frequency behaviors, respectively. Furthermore, gm is the
mutual coupling, representing the conductance of the memristive device. The mem-
ristive device can be modeled via

I = gm(x, t) · V with
dx

dt
= f (x, V, t). (12)

Here, x is the memristive state variable, V the voltage across the memristive device
(for example, V = y1 − y2), and f a dynamic function describing the voltage-driven
atomic reconfiguration in the particular material system [160]. The device con-
ductance influences the coupling strength via gm(x, t) = x · Gon + (1 − x) · Gof f ,
where Gon and Gof f are the maximum and minimum conductance of the device,
respectively. The obtained result is shown in Fig. 17c. Here, the change of the cou-
pling strength [upper graph in Fig. 17c] synchronizes the initially asynchronous oscil-
lators. Thus, memristively coupled oscillators allow emulating the initially described
essential principle of biological information processing: synchronization (informa-
tion encoding into coherent states by correlated neural activity) and memory (change
of connectivity).
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4.2.2 Memristive Devices for Oscillator Computing

Using suitable memristive devices is an important point for realizing the previously
presentedmodel in hardware. The typical characteristics ofmemristive devices can be
roughly divided into two classes. The first class of devices shows an abrupt resistance
jump at a specific voltage (type 1), while the second class exhibits a gradual resistance
change under an applied voltage (type 2). In Fig. 18, representatives of the two
classes of memristive devices are compared. The first device (type 1) has the layer
sequence Al/TiOx/Ag and is an electro-chemical metallization cell (ECM), while the
second device (type 2) is composed of the layer sequence TiN/TiOx/HfOx/Au, and
its resistance change is functionally based on a valence-change mechanism (VCM).
For the latter, a bi-layer oxide structure has been used, which is known to stabilize
the resistance switching mechanism [161, 162]. Figure 18b shows measurements for
the two types of devices. While for type 1 cell an abrupt jump in the resistance is
observed, and the investigated type 2 device shows a more gradual transition of the
conductance under voltage cycling. To analyze the consequences of the device type on
the dynamics of coupled oscillators, two scenarios were simulated: (i) an abrupt and
fast change of the coupling strength, when a threshold voltage is reached (behavior
type 1) and (ii) a gradual change of the coupling strength, when the threshold value
Vth,p is exceeded (grey line in Fig. 18). Furthermore, the bi-directional switching
behavior was taken into account such that gm is reduced again when the voltage falls
below a negative threshold value Vth,n . The obtained results are shown in Fig. 18c.
It can be seen that the binary switching devices show a much faster synchronization.

Fig. 18 a Typical memristive devices with archetypal switching characteristics. b I -V character-
istics of an Al/TiOx/Ag cell (type1) and TiN/TiOx/HfOx/Au (type2). c Simulation of the dynamics
of the two coupled oscillators (y1 and y2) via a memristive device (conductance gm ) with an abrupt
change in resistance (red) and a gradual change (blue). Here y1 − y2 represents the voltage across
the memristive device. The threshold values for set and reset of the devices are shown in gray
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4.2.3 Experimental Realization and Networks

A hardware implementation of memristively coupled oscillators is shown in Fig. 19.
Here, van der Pol oscillators are realized via a programmable unijunction transistor
(PUT) based circuit, as described in detail in Ref. [112]. In this circuit, the two
oscillators are coupled via a memristive device so that their voltage oscillations (at
points u j and ui ) are smaller than the thresholds of the devices. Thus, the voltage
oscillations cannot change the resistance value of the memristive device [see Fig.
19a]. The ECM cell shown in Fig. 18a was used as the memristive device, which
changes its conductance gm depending on an external voltage signal ulearn . As shown
in Fig. 19b, the oscillators can be synchronized with this circuit depending on gm .
For the example shown in Fig. 19b, a voltage sequence of seven voltage pulses of
2.2 V amplitude was applied to the memristive device. This yields a conductance
change of the device.

The transition to a simple artificial neural network is shown in Fig. 19c and d.
The four oscillators of the first layer are connected to the two oscillators a and
b of the second layer. Initially, all six oscillators of the network oscillate in their
own frequency, as indicated in the contour plot by the different colors [Fig. 19c]. By
applying a voltage sequence ulearn , the connectivitymatrix gm between the oscillators
changes, which strengthens the coupling between oscillators 1, 2, and a as well as
oscillators 3, 4, and b. As a result, the system oscillates with only two frequencies,
as shown in Fig. 19d (different colors in contour plot). This computing scheme

Fig. 19 a Experimental realization of memristively coupled van der Pol oscillators. b Voltage
courses u j and ui are labeled in the circuit diagram in a. The voltage train ulearn (starting at
100 ms) decreases the resistance of the memristive device and the previously asynchronous oscil-
lators synchronize. The ECM cell shown in Fig. 18a was used as memristive device. c Network of
6 van der Pol oscillators. By changing the coupling matrix gm as a consequence of altered external
conditions, the oscillators are synchronized in two frequencies (red and blue) d
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was used in Ref. [113] to emulate perception. Thereby, ulearn can be identified as a
level of perception that strengthens or weakens different connections depending on a
temporal change of perception. For that, the inherent stochasticity of the memristive
devices was used. In this respect, the number of voltage pulses defines the probability
that the memristive device changes its resistance state. Thus, the number of voltage
pulses of ulearn simulates the level of perception. Therefore, a certain analogy to
biology can be established in the solution of the binding problem [113].
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