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Abstract—Summers have been getting hotter in recent years.
This is a warning for us that fighting against climate change
requires our participation. On dairy farms, there are large
numbers of cows. Their urine contains ammonia, which is
harmful to the environment. To neutralise these harmful gases in
time, the urination of cattle needs to be detected so that counter-
measures can be enacted correspondingly. Frequency-Modulated
Continuous-Wave (FMCW) RADAR and deep learning methods
will be combined to detect and recognize cattle urination events
in this work.

Index Terms—FMCW, RADAR, mmWave, ammonia, deep
learning, urination detection

I. INTRODUCTION

RADAR technology has attracted a lot of attention in recent
years. There are many applications regarding RADAR. In the
medical field, RADAR can be used to detect physiological
signals [1], such as breathing rate and heartbeat rate or even
blood pressure. In addition to this, RADAR plays a crucial
role in gesture recognition [3], [8] and gait recognition [2].

In this work, RADAR will be used to detect the urinary
behaviour of cattle. Cattle urine contains ammonia, which
can pollute the environment. It is essential to detect urination
events from cattle as their urine tends to evaporate rapidly
at normal temperatures. When a single urination event is
detected, measures can be taken to effectively remove the
contaminant. Information about the health of cattle can also
be obtained from the frequency and duration of urination.

Ammonia sensors can detect ammonia. However, it is not
capable of locating the exact position of the cow’s urine.

Devices that can detect cow urination include cameras,
RADAR, etc. Cameras cannot protect the farmer’s privacy
and their performance is affected by lighting conditions. In
contrast, RADAR offers better protection of the farmer’s
privacy and works well in all light conditions.

From the many types of RADAR, the Frequency-Modulated
Continuous-Wave (FMCW) RADAR [5] was chosen to imple-
ment the experiment. This is because the FMCW RADAR can
detect the range and velocity of multiple targets.

In this work, we carried out pre-experiments indoors to
select suitable features for the urine fall and conducted the
first experiments on the farm.

The size of the RADAR raw data is large. If it is fed directly
into the neural network, the neural network will be under a lot
of computational pressure. The FMCW RADAR raw data can
be pre-processed to obtain a range-Doppler heat map and a
range-angle heat map. Its size is smaller compared to the raw
data and the range, Doppler and angular features of the target
are highlighted.

There is a water falling process in cow urination and
therefore a corresponding change in range and Doppler, but
not much in angle. The results of the pre-experiments in the
indoor environment indicate that the water falling changes
more significantly on the range Doppler heat map because of
its higher range and velocity resolution. Range-Doppler heat
map for each frame will be fed into the convolutional neural
network as input data for further feature extraction, which will
then be learned by the long short-term memory (LSTM) [10]
neural network in temporal and eventually classified in the
classifier.

The rest of the paper is organised as follows. In Section II,
the FMCW RADAR system will be explained, followed by a
description of the event detection and recognition methodology
in Section III. In Section IV, the experimental setup and
analysis of the results will be presented. Section V will
conclude the paper.

II. FMCW RADAR SYSTEM

The waveform of the FMCW RADAR employed in this
work is an upward sawtooth wave, as illustrated in the Figure
2. The parameter B on the Figure 2 is the bandwidth. Tc is
the time duration of a Chirp. τ is the time of flight for the
waveform to travel from the transmitter to the target object
and be bounced back to the receiver. fb is the beat frequency.
Tf represents the duration of a frame. One frame has multiple
chirps.
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Fig. 1. Example of Cattle Urination [4]

Fig. 2. Waveform

A typical transmitter wave is represented as follows:

T (t) = A cos (2πfct+ π
B

Tc
t2) (1)

Where A is the amplitude factor, fc represents the starting
frequency.

Chirp is transmitted into space and bounced back to the
receiver by the object, the expression for the waveform at the
receiver is:

R(t) = αA cos (2πfc(t− τ) + π
B

Tc
(t− τ)2) (2)

Where α is the amplitude attenuation factor.
The received signal will be mixed with the transmitted signal

and passed through a low pass filter to filter out the high
frequency signal. Afterwards the beat signal will be obtained.

B(t) = αA2ej(2πfbt+ϕ(t)) (3)

The ϕ(t) can be written as:

ϕ(t) =
4πR(t)

λ
(4)

Where R(t) is the distance between the target and the RADAR
and λ denotes the wavelength.

Fig. 3. Raw data structure

Then the beat frequency can be expressed as:

fb = Sτ (5)

S is the slope of the chirp.

III. PROPOSED EVENT DETECTION AND RECOGNITION
METHODOLOGY

A. Feature selection

The raw data from the FMCW RADAR has three dimen-
sions, as depicted in Figure 3, namely range bins, chirps
and antennas. A chirp has multiple range bins. There are
multiple chirps per frame. The experimental RADAR uses one
transmitting antenna and 16 receiving antennas, so there are
16 antenna channels per frame. From these the range, speed
and angle of the target can be extracted by performing a fast
Fourier transform (FFT) along those three dimensions.

After performing the 2DFFT, a range-Doppler heat map
(RDM) can be constructed. Similarly range-angle heat maps
(RAM) can be obtained after 3DFFT. More information on the
processing of RADAR data can be found in [3].

Before the formal experiments start, a simple pre-experiment
is carried out in an indoor environment to find suitable features.
In the pre-experiment, tap water is used to mimic the process
of urine falling. Tap water has similar reflective properties to
urine as there are some dissolved substances in it. As shown
in Figure 5, two snapshots capture the water’s fall.

Because the water fall is continuous, this special feature
can also be observed in the RDM map in Figure 5a. Similar
to RDM, there are similar features in RAM map, but they are
not as clear as those in RDM.

The range-Doppler map is therefore selected as the target
feature and will be further fed into the neural network for
training and recognition.

B. Recognition pipeline

The recognition pipeline is displayed in Figure 4. The LSTM
neural network will be used together with a convolutional
neural network (CNN) [8] to learn and recognise the char-
acteristics of the falling urine, as the dynamic characteristics
of the falling water can be learned and remembered due to its
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Fig. 4. Recognition pipeline

(a) RDM (b) RAM

Fig. 5. Features of water falling

feedback mechanism and memory module. The range-Doppler
map is fed sequentially into the CNN to extract features. Next
these features will be passed to the LSTM unit. In the final
stage, classification decisions will be made.

IV. EXPERIMENT AND EVALUATION

A Radarbook2 microwave RADAR evaluation platform [6],
a Raspberry Pi [7] and a camera are utilized in the experiment.
The RADAR has a starting frequency of 76 GHz, a bandwidth
of 4 GHz and a chirp duration of 200 microseconds. The
recordings from the camera will be used as ground truth. The
experimenter will be able to manipulate and adjust the data
collection process remotely. The layout of the specific equip-
ment system is illustrated in Figure 6. The experimental site
is the barn of the Leibniz-Innovationshof [9] in Brandenburg.
Our experimental equipment is mounted to a beam above the

Fig. 6. Experimental system

Fig. 7. Experimental set-up

Fig. 8. Near-view of experimental equipment

animals in the cattle barn and is marked in blue in Figure 7,
and the cattle often walk along this corridor. Figure 8 presents
a near view of the experimental equipment. The RADAR and
Raspberry Pi are packed in a box with holes. The camera is
positioned on the outside of the box and is connected to the
Raspberry Pi via a cable.

As the urinary behaviour of cattle is not under human
control, a cow urinates approximately 5-10 times per day, and
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the size of the RADAR monitoring area is limited. Sufficient
events for neural network training require a longer time to
collect. It is good to have as much training data as possible
so that a wide variety of peeing patterns will be included. The
trained model will perform better in the test set. The ratio of
the training and test sets in the plan is 70% to 30%.

In the future, when sufficient valid data is collected, this
work can be moved further forward.

V. CONCLUSION AND FUTURE WORK

In this paper, RADAR is used for the first time to monitor
the urinary behaviour of cattle, for the sake of environmental
protection. This ongoing work will aim to collect sufficient and
valid data to validate the recognition pipeline in this paper and
to eventually achieve the goal of protecting the environment
and mitigating global warming.
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