
Increasing the Robustness of the Montgomery
kP -Algorithm against SCA by Modifying its

Initialization

Estuardo Alpirez Bock, Zoya Dyka, and Peter Langendoerfer

IHP
Im Technologiepark 25, Frankfurt (Oder), Germany

{alpirez,dyka,langendoerfer}@ihp-microelectronics.com

http://www.ihp-microelectronics.com

Abstract. The Montgomery kP -algorithm using Lopez-Dahab projec-
tive coordinates is a well-known method for performing the scalar multi-
plication in elliptic curve crypto-systems (ECC). It is considered resistant
against simple power analysis (SPA) since each key bit is processed by the
same type, amount and sequence of operations, independently of the key
bit’s value. Nevertheless, its initialization phase affects this algorithm’s
robustness against side channel analysis (SCA) attacks. We describe how
the first iteration of the kP processing loop reveals information about the
key bit being processed, i.e. bit kl−2. We explain how the value of this bit
can be extracted with SPA and how the power profile of its processing can
reveal details about the implementation of the algorithm. We propose a
modification of the algorithm’s initialization phase and of the processing
of bit kl−2, in order to hinder the extraction of its value using SPA. Our
proposed modifications increase the algorithm’s robustness against SCA
and even reduce the time needed for the initialization phase and for pro-
cessing kl−2. Compared to the original design, our new implementation
needs only 0.12% additional area, while its energy consumption is almost
the same, i.e. we improved the security of the design at no cost.

Keywords: elliptic curve cryptography, Montgomery kP -algorithm, power
analysis

1 Introduction

Side channel analysis (SCA) attacks have been a popular research topic in the
last years. Parameters like power consumption, electromagnetic radiation and
execution time of a cryptographic implementation can be analysed for identify-
ing implementation details and based on this, extracting the private key. The
Montgomery kP -algorithm using Lopez-Dahab projective coordinates [1] is an
efficient method for performing the scalar multiplication kP in elliptic curve
crypto-systems (ECC). This algorithm is a bitwise processing of the l-bit long
scalar k = kl−1, kl−2, . . . , k1, k0; which is the private key used for performing de-
cryption in ECC. It is considered resistant against simple power analysis (SPA).

“This is a pre-print of an article published in [International Conference on Information Technology
and Communications Security]. The final authenticated version is available online at: https://doi.org/
[10.1007/978-3-319-47238-6_12”.

2 —E. Alpirez Bock, Z. Dyka and P. Langendoerfer

Nevertheless its first loop iteration (performed for processing the key bit kl−2)
reveals information about the value of the key bit being processed. This key bit
can be extracted with SPA. Besides this, the power profile of the processing of
kl−2 can be used for understanding implementation details of the kP -algorithm
and thus for the preparation of further attacks.

In this paper we describe how the initialization phase of the Montgomery
kP -algorithm affects the algorithm’s resistance against SCA attacks. We use
simulated power traces (PTs) to show how the power profile of the processing
of kl−2 differs from the power profiles of the processing of all other key bits.
Moreover, we demonstrate that this power profile differs significantly for the
cases kl−2 = 1 and kl−2 = 0. This leads to an easy extraction of bit kl−2 using
SPA and exposes details of the implementation of the algorithm, which can be
useful for the preparation of further attacks. As a countermeasure against this
vulnerability, we propose to process key bit kl−2 outside of the algorithm’s main
loop, with a different operation flow. We show that with this modification, the
power profiles of the processings of kl−2 = 1 and kl−2 = 0 look similar to each
other and similar to the processing of all remaining bits of the key, i.e. the value
of the key bit kl−2 cannot be extracted using SPA. The initialization phase of
the algorithm is shortened, as well as the processing of kl−2. The execution time
of a kP -operation using our modified design was reduced by 11 clock cycles. Our
modifications did not imply an increase on the energy consumption needed for
the calculation of kP , which remains by 2.09 µJ, and our implementation’s chip
area was increased by only 0.12%.

The rest of this paper is structured as follows. In section 2 we describe the
Montgomery kP -algorithm using Lopez-Dahab projective coordinates and dis-
cuss its resistance against SCA. Section 3 explains how the processing of kl−2

reveals information about the key bit being processed, as well as information
regarding the implementation details. In section 4 we present our modifications
of the Montgomery kP -algorithm regarding its initialization phase and the pro-
cessing of kl−2. Section 5 shows results regarding the power profiles, area and
energy consumption of our implementation of the original kP -algorithm and our
modified version.

2 Montgomery kP -Algorithm

The Montgomery kP -algorithm using Lopez-Dahab projective coordinates was
introduced in 1999 [1]. The work presented in [2] shows a possible way of imple-
menting this algorithm (see Algorithm 1). Only the value of the x-coordinate of
point P is used. No division operations and no operations with the y-coordinates
of the EC points need to be performed in the main loop. This reduces the execu-
tion time and energy consumption of the calculation of kP . Due to this fact, the
algorithm is often implemented for energy constrained devices such as wireless
sensor nodes.

Increasing the Robustness of the Montgomery kP -Algorithm against SCA 3

Algorithm 1 Montgomery algorithm for the kP -operation using projective co-
ordinates

Input: k = (kl−1, ..., k1, k0)2 with kl−1 = 1, P = (x, y) ∈ E(GF (2m)).
Output: kP = (x1, y1).
1: X1 ← x, Z1 ← 1, X2 ← x4 + b, Z2 ← x2.
2: for i from l − 2 downto 0 do
3: if ki = 1 then
4: T ← Z1, Z1 ← (X1Z2 +X2Z1)2, X1 ← xZ1 +X1X2TZ2,
5: T ← X2, X2 ← X4

2 + bZ4
2 , Z2 ← T 2Z2

2 .
6: else
7: T ← Z2, Z2 ← (X2Z1 +X1Z2)2, X2 ← xZ2 +X1X2TZ1,
8: T ← X1, X1 ← X4

1 + bZ4
1 , Z1 ← T 2Z2

1 .
9: end if

10: end for
11: x1 ← X1/Z1.
12: y1 ← y + (x+ x1)[X1 + xZ1)(X2 + xZ2) + (x2 + y)(Z1Z2)]/(xZ1Z2).
13: return ((x1, y1)).

The Montgomery kP -algorithm is a bitwise processing of the scalar k. The
scalar k is the private key used for performing decryption in ECC. Each bit of k,
except its most significant bit (MSB), is processed with the same type, amount
and sequence of operations, independently of the key bit’s value. Due to this
fact, the Montgomery kP -algorithm is in the literature referred to as resistant
against some SCA attacks, such as SPA and simple electromagnetic analysis [3].
The algorithm consist of three parts. The first part is the initialization phase
(see line 1 in Algorithm 1). During this phase, the conversion of affine EC point
coordinates to Lopez-Dahab projective coordinates takes place and the MSB of
the scalar k, the key bit kl−1 = 1, is processed. The second part corresponds to
the processing of all remaining bits of the scalar k, i.e. bits kl−2, kl−3, . . . , k1, k0
(see lines 2 to 10 in Algorithm 1). This is the main loop of the algorithm.
Depending on the value of the key bit ki the operations in lines 4 and 5 or the
operations in lines 7 and 8 are executed. Both possible loop iterations, i.e. in case
ki = 1 and in case ki = 0, are executed in exactly the same way. In both cases
6 multiplications,1 5 squarings, 3 additions and 6 register write operations are
performed. The two loops only differ in the interchangeable use of the registers as
input and output parameters. The third part of Algorithm 1 corresponds to the
conversion of the multiplicaiton result kP = (X,Z) back to affine coordinates
(see lines 11 and 12).

1 For example if the product X1X2TZ2 in line 4 is calculated as X1X2TZ2 = (X1Z2) ·
(X2T), this calculation corresponds to only one multiplication since the products
X1 · Z2 and X2 · T are already calculated.

4 —E. Alpirez Bock, Z. Dyka and P. Langendoerfer

2.1 Initialization Phase as Loop Iteration

In [4] the initialization phase of Algorithm 1 is simplified. Only the values given
in (1) are assigned to the registers and no calculations are performed in this
phase.

X1 ← 1, Z1 ← 0, X2 ← x, Z2 ← 1. (1)

Then, the first iteration of the main loop is executed according to Algorithm
1, but for the MSB kl−1 = 1. Thus, the initialization phase in Algorithm 1 is
performed as a regular loop. After processing key bit kl−1, the registers have the
following values, which are the same as those shown in line 1 of Algorithm 1:

X1 ← x, Z1 ← 1, X2 ← x4 + b, Z2 ← x2. (2)

The purpose of this modification was to avoid the design of any additional mod-
ules, eventually needed for the calculations performed during the initialization
phase of the algorithm. Recent publications such as [5] and [6] also implement
the initialization phase of the Montgomery kP -algorithm in this way, i.e. as a
regular loop with special inputs.

2.2 Implementation of the Montgomery kP -Algorithm and SCA

A lot of research has been done on efficient implementations of the Montgomery
kP -algorithm. A possible way of achieving efficiency is through the parallel ex-
ecution of the operations in the algorithm. [7], [5] and [8] presented efficient
implementations of the Montgomery kP -algorithm based on architectures that
consist of one multiplier only. In these implementations the arithmetic and reg-
ister write operations are performed in parallel to the multiplications during the
executions of the main loop. In this case, the execution time of one loop iteration
is defined by the time needed for performing all 6 multiplications in the loop.
This is the minimum execution time for one iteration of the loop.

The focus of many research publications is only on the efficiency of the al-
gorithm’s implementation, while resistance against SCA is not considered (for
example [7], [5] and [6]). Other papers discuss only the resistance of the Mont-
gomery kP -algorithm against SCA attacks, for example [9]. The resistance against
timing, simple power analysis and simple electromagnetic analysis attacks is
claimed based on the fact that the algorithm performs the same type, sequence
and number of operations on every iteration, independent of the key bit value
[3]. Implementations resistant to SPA attacks can still be attacked using dif-
ferential power analysis (DPA). The randomization of the key k or of the EC
projective coordinates, as well as blinding of the EC point P [10] are well known
countermeasures against DPA attacks.

In the following section, we show that the value of kl−2 can be extracted
through SPA if the Montgomery kP -algorithm is implemented using Lopez-
Dahab projective coordinates and if no special countermeasures have been im-
plemented. In section 4 we show how we modified Algorithm 1 to avoid the easy
extraction of key bit kl−2 through SPA.

Increasing the Robustness of the Montgomery kP -Algorithm against SCA 5

3 Vulnerabilities due to the Initialization Phase

In line 1 of Algorithm 1 the registers X1, Z1, X2 and Z2 are initialized. The
registers are used with these initial values as inputs for the first iteration of
the algorithm’s main loop, i.e. for the processing of key bit kl−2. Register Z1

is initialized with the value 1. This means that for the processing of kl−2, all
operations performed with register Z1 are operations performed with an operand
with value 1:

if kl−2 = 1

T ← 1, Z1 ← (X1Z2 +X2 · 1)2, X1 ← xZ1 + (X1Z2)(X2 · 1),

T ← X2, X2 ← (X2
2)2 + b(Z2

2)2, Z2 ← T 2Z2
2 .

(3)

if kl−2 = 0

T ← Z2, Z2 ← (X2 · 1 +X1Z2)2, X2 ← xZ2 + (X1T)(X2 · 1),

T ← X1, X1 ← (X2
1)2 + b(12)2, Z1 ← T 2 · 12.

(4)

This fact has the following consequences regarding the processing of kl−2:

– Any multiplication performed with Z1 = 1 as operand2 will result in the
value of the other operand.

– Any squaring operation performed with Z1 = 1 as input will result in 1.
– The power consumption of such operations is significantly low in comparison

to the power consumed by operations performed using operands with values
higher than 1.

Thus, the power profile of the processing of kl−2 differs significantly from the
power profile of the processing of all other key bits. Moreover, the power profiles
in the cases kl−2 = 1 and kl−2 = 0 differ significantly from each other. Thus, the
value of kl−2 can be extracted through SPA.

3.1 Easy Extraction of the Key Bit kl−2

In the first loop iteration of Algorithm 1, a different amount of operations us-
ing register Z1 = 1 as operand are performed depending on the value of kl−2

(compare (3) and (4)). If kl−2 = 1, register T is overwritten with Z1 = 1 and
only one multiplication uses Z1 = 1 as operand. If kl−2 = 0, two squarings and
three multiplications are performed using Z1 = 1 as operand. This means that
the power profile of the processing of kl−2 is different in case kl−2 = 1 and in
case kl−2 = 0. In case kl−2 = 1 the corresponding power profile should have one
dip, which corresponds to the multiplication X2 · Z1 = X2 · 1. In case kl−2 = 0,
the corresponding power profile should have three of such dips, corresponding
to X2 · Z1 = X2 · 1; b · Z4

1 = b · 1, and T 2 · Z2
1 = T 2 · 1. In this context, the value

2 Here, 1 is the integer value.

6 —E. Alpirez Bock, Z. Dyka and P. Langendoerfer

of kl−2 can be easily identified.

Figure 1 shows simulated PTs of an execution of the kP -operation with our
implementation of the Montgomery kP -algorithm [8] using the IHP 130 nm tech-
nology [11]. Each trace is divided into slots, whereby one slot corresponds to the
processing of one key bit ki. Each simulation was made using a different key.3

The trace in Figure 1(a) was simulated using key k1, whereby the value of the
key bit k1l−2 = 1. The trace in Figure 1(b) was simulated using key k2, whereby
the value of key bit k2l−2 = 0. Our simulation results were obtained using the
Synopsis PrimeTime suite [12].

Time (ps)

P
o

w
er

 (
W

)

init.
kl-2=1 kl-3 kl-4

(a)

Time (ps)

P
o

w
er

 (
W

)

init.
kl-2=0 kl-3 kl-4

(b)

Fig. 1: Two PTs simulated using our implementation of the Montgomery kP -
algorithm according to Algorithm 1. The trace in (a) was simulated for the
point multiplication k1·P with k1l−2 = 1. Only one dip can be seen during
the processing of kl−2 in this trace. The trace in (b) was simulated for the point
multiplication k2·P with k2l−2 = 0. Three dips can be seen during the processing
of kl−2 in this trace.

3 k1 = cd ea65f6dd 7a75b8b5 133a70d1 f27a4d95 06ecfb6a 50ea526e b3d426ed
k2 = 93 919255fd 4359f4c2 b67dea45 6ef70a54 5a9c44d4 6f7f409f 96cb52cc

Increasing the Robustness of the Montgomery kP -Algorithm against SCA 7

Figure 1(a) shows only one dip in the slot corresponding to the processing of
kl−2. Figure 1(b) shows three dips in the slot corresponding to the processing of
kl−2. Thus, it can be easily concluded that kl−2 = 1 has been processed in the
first slot of the curve in Figure 1(a). The same way it is easily observable that
kl−2 = 0 has been processed in the first slot of the curve in Figure 1(b). This
means that the key bit kl−2 can be extracted through SPA.

3.2 Vulnerabilities to Other Attacks

In section 3.1 we demonstrated that the key bit kl−2 can be extracted with SPA.
The extraction through SPA can be done for only one bit of the key, but the
power profile of the processing of kl−2 can be helpful for the preparation of other
physical attacks.
For a successful extraction of the complete key, the attacker needs to know which
operands are processed in operations within a certain clock cycle, i.e. he needs
knowledge about the implementation details of the algorithm’s main loop. If
the kP operation is implemented according to Algorithm 1, the power profile
of the processing of kl−2 is helpful to understand the implementation details.
This power profile reveals details about the implemented operation execution
sequence and the time needed for processing one key bit, i.e. for performing one
loop iteration. This information is very useful for preparing, for example, DPA
attacks [13], template attacks [14] or fault analysis attacks. For the processing
of kl−2, the attacker knows exactly which data is being processed, i.e. he knows
the input values for this loop iteration (see line 1 of Algorithm 1) and can easily
extract the key bit value being processed (see section 3.1). Since he knows as
well how this data is being processed, the processing of kl−2 can be used as a
reference for creating templates for other attacks.

If the initialization phase of the Montgomery kP -algorithm is implemented
according to [4], the implementation becomes even more vulnerable to other
power analysis, template or fault analysis attacks. The attacker knows the value
of the key bit and the input data that has been processed not only in the first
loop iteration, i.e. kl−1 = 1, but also in the second loop iteration, i.e. kl−2. The
attacker has the processing of two bits as a reference for creating templates.

4 Countermeasure for Protecting the Key Bit kl−2

To avoid the extraction of key bit kl−2 through SPA and to hinder the use of
the processing of kl−2 for preparing other attacks, we suggest to process the key
bit kl−2 outside of the main loop of Algorithm 1 using a simplified sequence of
operations. Key bit kl−2 can be processed with a simplified operation sequence
since each operation performed with an operand with value 1, i.e. each operation
performed with register Z1, can be skipped.
The initialization phase of Algorithm 1 can be simplified as well. The initial-
ization for register Z1 ← 1 (see line 1 of Algorithm 1) can be skipped since no

8 —E. Alpirez Bock, Z. Dyka and P. Langendoerfer

operations will be performed using this value as an operand. This reduces the
time and energy consumption needed for processing the key bits kl−1 and kl−2.

By skipping all operations performed with operand 1 in both cases, kl−2 = 1
and kl−2 = 0, the value of kl−2 can also be easily extracted through SPA,
because of the different number of operations performed in each case. In case
kl−2 = 1, one register write operation and one multiplication can be skipped,
while if kl−2 = 0, two squarings and three multiplications can be skipped. Thus,
the execution time and power profiles of the processing of kl−2 = 1 and kl−2 = 0
differ significantly. To prevent the SPA in this case, the same operation flows
should be performed independently of the value of kl−2. Thus in case kl−2 = 0,
in which two squarings and three multiplications can be skipped, both squarings
and two of these multiplications should be replaced by dummy operations (all
operands 6= 1), whose results can be ignored. In case kl−2 = 1, one dummy
register write operation should be performed. The details of our modification
are discussed in the rest of this section.

4.1 Shortened Initialization Phase

Since no operations using register Z1 = 1 as input will be executed during the
processing of kl−2, the initialization of register Z1 can be skipped. This makes
the initialization phase of the algorithm shorter, consisting of only the following
operations:

X1 ← x,X2 ← x4 + b, Z2 ← x2. (5)

4.2 New Sequence for Processing of Key Bit kl−2

Algorithm 2 shows our modified version of Algorithm 1. The initialization phase
and the processing of kl−2 are simplified. The operation flow for kl−2 (see lines
2-8) differs from the operation flow in the main loop (see lines 9-17).

Increasing the Robustness of the Montgomery kP -Algorithm against SCA 9

Algorithm 2 Modified Montgomery algorithm for the kP -operation

Input: k = (kl−1, ..., k1, k0)2 with kl−1 = 1, P = (x, y) ∈ E(GF (2m)).
Output: kP = (x1, y1).
1: X1 ← x, X2 ← x4 + b, Z2 ← x2.
2: if kl−2 = 1 then
3: T ← Z2, Z1 ← (X1Z2 +X2)2, X1 ← X1Z2X2 + Z1x,
4: T ← X2, U ← bZ4

2 , X2 ← X4
2 + U , U ← TZ2, Z2 ← U2.

5: else
6: T ← Z2, Z2 ← (X1Z2 +X2)2, X2 ← X1X2T + Z2x,
7: T ← X1, U ← bX4

2 , X1 ← X4
1 + b, U ← TX2, Z1 ← T 2.

8: end if
9: for i from l − 3 downto 0 do

10: if ki = 1 then
11: T ← Z1, Z1 ← (X1Z2 +X2Z1)2, X1 ← xZ1 +X1X2TZ2,
12: T ← X2, X2 ← X4

2 + bZ4
2 , Z2 ← T 2Z2

2 .
13: else
14: T ← Z2, Z2 ← (X2Z1 +X1Z2)2, X2 ← xZ2 +X1X2TZ1,
15: T ← X1, X1 ← X4

1 + bZ4
1 , Z1 ← T 2Z2

1 .
16: end if
17: end for
18: x1 ← X1/Z1.
19: y1 ← y + (x+ x1)[X1 + xZ1)(X2 + xZ2) + (x2 + y)(Z1Z2)]/(xZ1Z2).
20: return ((x1, y1)).

The processing of key bit kl−2 consists of 5 multiplications, 5 squarings, 3
additions and 8 register write operations, independently of the value of kl−2. Two
dummy multiplications and two dummy squarings are performed for the case
kl−2 = 0 (see line 8, operations U ← bX4

2 and U ← TX2). In case kl−2 = 1, one
dummy register write operation is necessary (see line 4 the operation T ← Z2).
No operations are performed with an operand with integer value 1.

5 Results

With the goal of evaluating our proposed modification of the Montgomery kP -
algorithm, we implemented the kP -operation according to Algorithm 1 and 2
and synthesized both using the IHP 130 nm technology. The main difference
between both designs is the processing of the key bits kl−1 and kl−2.
Figures 2(a) and 2(b) show simulated PTs of the kP -operation executed with
our implementation of the Montgomery kP -algorithm according to Algorithm
1. Figures 2(c) and 2(d) show simulated PTs of the kP -operation executed with
our implementation of the Montgomery kP -algorithm according to Algorithm
2. The traces in Figures 2(a) and 2(c) were simulated using key k1, whereby
k1l−2 = 1. The traces in Figures 2(b) and 2(d) were simulated using key k2,
whereby k2l−2 = 0. The power profiles of the slots corresponding to key bit kl−2

in Figures 2(c) and 2(d) look similar and show no dips in contrast to the power

10 —E. Alpirez Bock, Z. Dyka and P. Langendoerfer

profiles of the first slots in Figures 2(a) and 2(b).

Time (ps)

P
o

w
er

 (
W

)

init.
kl-2=1

(a) k1 · P according to Algorithm 1

Time (ps)

P
o

w
er

 (
W

)

init.
kl-2=0

(b) k2 · P according to Algorithm 1

Time (ps)

P
o

w
er

 (
W

)

init.
kl-2=1

(c) k1 · P according to Algorithm 2

Time (ps)

P
o

w
er

 (
W

)

init.
kl-2=0

(d) k2 · P according to Algorithm 2

Fig. 2: PTs simulated using our implementations of the Montgomery kP -
algorithm according to Algorithm 1 (see PTs (a) and (b)) and to Algorithm
2 (see PTs (c) and (d)). The traces in (a) and (c) correspond to the simulations
made for key k1 with k1l−2 = 1. The traces in (b) and (d) correspond to the
simulations made for key k2 with k2l−2 = 0. The power profiles of the process-
ing of kl−2 look similar for the two traces simulated using the implementation
of Algorithm 2.

Table 1 shows a comparison of both implementations. We compare the execu-
tion times and energy consumption of both implementations with special focus
on the execution times and energy consumption demanded for the initialization
phase of the algorithm and the processing of kl−2.

Increasing the Robustness of the Montgomery kP -Algorithm against SCA 11

Table 1: Comparison of our implementation of Algorithm 1 with our implemen-
tation of Algorithm 2.

ECC implementation Algorithm 1 Algorithm 2

Initialization Phase
Clock cycles 7 5
Energy 0.63 nJ 0.46 nJ

Processing of kl−2

Clock cycles 54 45

Energy
kl−2 = 1 8.60 nJ 7.45 nJ
kl−2 = 0 7.60 nJ 7.45 nJ

Extraction of kl−2 through SPA Yes No

Revealed implementation details Yes No

kP
Clock cycles 12915 12904
Energy 2.10 µJ 2.09 µJ
Area 0.274503 mm2 0.274843 mm2

The time and energy consumption needed for processing the key bits kl−1

and kl−2 has been reduced in our implementation of Algorithm 2. Thus, the com-
plete implementation of the Montgomery kP -algorithm according to Algorithm
2 consumes slightly less energy for the complete calculation of kP . Moreover,
protection for the key bit value of kl−2 against SPA has been reached through
Algorithm 2. Since key bits kl−1 and kl−2 are processed in a different way as
the rest of the bits of k, our implementation of the Montgomery kP -algorithm
does not give the opportunity to learn/understand implementation details of the
main loop of the kP calculation. Thus, it no longer helps preparing other PA or
fault analysis attacks. The modifications made for Algorithm 2 only demanded
an increase in the chip area of 0.12% in comparison to our implementation of
Algorithm 1.

6 Conclusions

The Montgomery kP -algorithm using Lopez-Dahab projective coordinates is
considered to be an SPA resistant method for performing the kP -operation.
We showed using simulated PTs that the power profile of the processing of kl−2

differs significantly in the cases kl−2 = 1 and kl−2 = 0. This leads to an easy
extraction of the value of kl−2 with SPA and reveals information about the
analysed implementation of the algorithm. We proposed a modification of the
algorithm’s initialization phase and of the processing of bit kl−2 as a counter-
measure (see Algorithm 2). We showed that our modifications of the algorithm
provide protection of the key bit kl−2 against SPA.
In comparison to the original implementation, the execution time of the kP -
operation has been slightly reduced by 11 clock cycles with our modification of

12 —E. Alpirez Bock, Z. Dyka and P. Langendoerfer

the Montgomery kP -algorithm. Our modifications did not demand an increase
on our implementation’s energy consumption needed for the calculation of kP ,
which remained by 2.09 µJ and only demanded a very small increase of the
implementation’s chip area by 0.12%. Thus, we achieved to increase the robust-
ness of our implementation against selected SCA attacks without any additional
costs.

Acknowledgments. The research leading to these results has received fund-
ing from the European Commissions Horizon 2020 under grant agreement from
project myAirCoach No. 643607.

References

1. Lopez, J., Dahab, R.: Fast Multiplication on Elliptic Curves over GF (2m) without
Precomputation. In: Ko, .K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp.
316-327. Springer, Heidelberg (1999)

2. Hankerson, D., Lopez Hernandez, J., Menezes, A.: Software Implementation of El-
liptic Curve Cryptography over Binary Fields. In: Ko, .K., Paar, C. (eds.) CHES
2000. LNCS, vol. 1965, pp. 1-24. Springer, Heidelberg (2000)

3. Joye, M., Yen, S.: The Montgomery Powering Ladder. In: Kaliski, B. S., Ko, .K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291-302. Springer, Heidelberg
(2002)

4. Mahdizadeh, H., Masoumi, M.: Novel Architecture for Efficient FPGA Implementa-
tion of Elliptic Curve Cryptographic Processor Over GF (2163). In: IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems (Volume: 21, Issue: 12), pp.
2330-2333, IEEE, (2013)

5. Liu, S., Ju, L., Cai, X., Jia, Z., Zhang, Z.: High Performance FPGA Implementation
of Elliptic Curve Cryptography over Binary Fields. In: 13th International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom), pp
148-155, IEEE, (2014)

6. Li, L., Li, S.: High-Performance Pipelined Architecture of Elliptic Curve Scalar
Multiplication over GF (2m). In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems (Volume:PP, Issue: 99), pp 1-10, IEEE, (2015)

7. Ansari, B., Hasan, A.: High-Performance Architecture of Elliptic Curve Scalar Mul-
tiplication. In: IEEE Transactions on Computers (Volume: 57, Issue: 11), pp. 1443-
1453, IEEE, (2008)

8. Alpirez Bock, E.: SCA Resistent Implementation of the Montgomery kP -Algorithm.
Master Thesis, BTU Cottbus-Senftenberg, (2015)

9. Fan, J., Verbauwhede, I.: An Update Survey on Secure ECC Implementations: At-
tacks, Countermeasures and Cost, Cryptography and Security. In: Naccache, D.
(ed.) From Theory to Applications, pp. 265-282, Springer, Heidelberg (2012)

10. Coron, J.: Resistance Against Differential Power Analysis For Elliptic Curve Cryp-
tosystems. In: Ko, .K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292-302.
Springer, Heidelberg (1999)

11. IHP, http://www.ihp-microelectronics.com/en/start.html

12. Synopsis, PrimeTime http://www.synopsys.com/Tools/Implementation/

SignOff/Pages/PrimeTime.aspx

Increasing the Robustness of the Montgomery kP -Algorithm against SCA 13

13. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal Corre-
lation Analysis on Exponentiation. In: Soriano, M., Qing, S., Lpez, J. (eds.) Informa-
tion and Communication Security. LNCS, vol. 6476, pp. 46-61. Springer, Heidelberg
(1999)

14. Chari, S., Rao, J., Rohatgi, P.: Template Attacks. In: Kaliski, B. S., Ko, .K., Paar,
C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13-28. Springer, Heidelberg (2002)

