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Exploiting intersubband transitions in Ge/SiGe quantum cascade 

devices provides a way to integrate terahertz light emitters into 

silicon-based technology. With the view to realizing a Ge/SiGe 

Quantum Cascade Laser, we present the optical and structural 

properties of n-type strain-symmetrized Ge/SiGe asymmetric 

coupled quantum wells grown on Si(001) substrates by means of 

ultrahigh vacuum chemical vapor deposition. We demonstrate 

high material quality of strain-symmetrized structures and 

heterointerfaces as well as control over inter-well coupling and 

electron tunneling. Motivated by the promising results obtained 

on ACQWs, which are the basic building block of a cascade 

structure, we investigate, both experimentally and theoretically, a 

Ge/SiGe THz QCL design, optimized through a non-equilibrium 

Green’s function formalism. 
 

 

Introduction 

 

Terahertz (THz) quantum cascade lasers (QCLs) have been demonstrated with different 

III-V materials (1). In the past decade however, relatively small progress has been 

reported to increase the maximum operating temperature (presently 200 K) despite 

substantial efforts of design optimization. The rationale for the quenching of THz laser 

emission above this temperature is due to the very effective electron–phonon (e–phonon) 

interaction, typical of III-V materials. Indeed, in polar lattices the longitudinal optical 

(LO) phonons induce a long-range polarization field which strongly couples to the charge 

carriers (Fröhlich interaction). The THz transitions are typically designed to be well 

below the optical phonon energy (30–36 meV), so that at low temperature the upper laser 

state is protected against scattering by emission of LO-phonons. With increasing 

temperature however, the thermally activated electrons in the subband of the upper lasing 

state gain enough in-plane kinetic energy to access this scattering channel. This non-

radiative relaxation of carriers reduces the population inversion and is responsible for 

quenching of the laser emission with increasing temperature as the gain drops below the 



cavity losses. As an alternative strategy, non-polar material systems are attractive because 

of their weaker e–phonon interaction. Indeed, in these crystals the e–phonon coupling is 

controlled by the deformation potential which due to its short range is much less effective 

than the Fröhlich interaction. Among different configurations (electron or hole based, Si 

or Ge rich regimes), theoretical studies have indicated n-type Ge/SiGe heterostructures 

where charge transport is associated to L electrons, as the most promising architecture (2). 

Experimentally, sharp THz absorption peaks, related to intersubband transitions in n-type 

strain compensated Ge/SiGe quantum wells (QWs) have been demonstrated in the 20–50 

meV region (3,4) which interestingly covers the Reststrahlen band of III-V compounds.  

Results 

With the view to realizing a Ge/SiGe QCL, we present the optical and structural 

properties of n-type strain-symmetrized Ge/SiGe asymmetric coupled quantum wells 

(ACQWs) grown on Si(001) substrates by means of ultrahigh vacuum chemical vapor 

deposition (5). 

Extensive structural characterization obtained by scanning transmission electron 

microscopy (STEM), atomic probe tomography (APT) and X-ray diffraction shows the 

high material quality of strain-symmetrized structures (up to 5-micron active region 

thickness) and heterointerfaces (featuring interface roughness below 0.2 nm), down to the 

ultrathin barrier limit (about 1 nm) (Fig. 1). 

 
Figure 1.  Z-contrast STEM image of an ACQW sample having a barrier thickness of 

2.3 nm. The inset shows a single period of the structure (scale bar =10 nm). 

 

By performing Fourier Transform Infrared (FTIR) absorption spectroscopy 

measurements on different ACQWs (varying well width or barrier thickness (Fig. 2)), we 

could identify two intersubband (ISB) absorptions, E01
abs and E02abs, due to transitions 

from ground level respectively to the first- and second-excited level of the ACQW 

system, and unambiguously demonstrate control over inter-well coupling and electron 

tunneling (5). These results combined with the modeling of non-radiative lifetimes 

measured by pump-probe experiments allowed us to evaluate the key parameters driving 

electron scattering in the SiGe material system. 



.                    

Figure 2: Dots: experimental ISB absorption spectra measured by FTIR on ACQWs as a 

function of the tunneling barrier width (bt) at fixed well widths of 12 and 5 nm. (b) 

Corresponding calculated spectra. (c) Calculated squared  wavefunctions for bt= 4 nm. 

Energy difference E02abs-E01abs (d) and ratio of the integrated spectral weight of the 

two ISB absorption peaks (e)  plotted vs bt.. Closed (open) symbols are used for 

experimental (numerical) data 

 

To assess the potential of this material system as a gain medium for intersubband cascade 

devices, we used the non-equilibrium Green’s function formalism to benchmark a 

Ge/SiGe 4-quantum well QCL against a GaAs/AlGaAs counterpart whose conduction 

band edge profiles and electronic states are reported in Fig. 3 (6).  

 

 
Figure 3: The conduction band profile and electronic states (squared modulus) fo the 

four-well GaAs/Al0.15Ga0.85As (a) and Ge/Si0.23Ge0.77 (b) QCL design calculated for the 

applied electric fields of 7.9 and 12.0 kV/cm, respectively. The electronic states shown 

are solutions of the Schroedinger equation on a single period (tight-binding basis). In 

panel (b),2 states confined in the barriers are also shown (dark grey lines). Simulations 

show that, due to the non-polar nature of SiGe alloys, the maximum gain of a Ge/SiGe 

QCL is much more robust against the temperature increase with respect to III-V based 

devices. Moreover, the interface roughness values measured on our samples are predicted 

to allow the possibility to achieve gain overcoming the losses of optimized double-metal 

waveguides at room temperature.  



Strain compensated QCL structure having an active region of several microns were 

grown and fabricated to mesa devices with top diffraction gratings to measure the surface 

emission under bias. FTIR spectra measured at 9K show a well-defined peak at 8-9 meV 

with a FWHM of roughly 4 meV that could indicate electroluminescence from 

intersubband transitions.  
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