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Abstract—The intensity of cosmic radiation can differ over 

five orders of magnitude within a few hours or days during Solar 

Particle Events (SPEs), thus increasing the probability of Single-

Event Upsets (SEUs) in space applications for several orders of 

magnitude. Therefore, it is vital to employ the early detection of 

the SEU rate changes in order to ensure timely activation of the 

radiation hardening measures. In this paper, a hardware 

accelerator for forecasting the SPEs by the prediction of in-

flight SEU variation is proposed. An embedded on-chip SRAM 

is used as the real-time particle detector. The dedicated hard-

ware accelerator implements a supervised machine learning 

model to forecast the SRAM SEUs one hour in advance with 

fine-grained hourly tracking of SEU variations during SPEs as 

well as under normal conditions. The whole design is intended 

for a highly dependable and self-adaptive multiprocessing 

system employed in space applications. Therefore, the target 

system can drive the appropriate radiation hardening 

mechanisms before the onset of high radiation levels.  

Keywords— solar particle event, machine learning, single 

event upset, hardware accelerator 

I. INTRODUCTION 

As technology scales into the deep nanometer range, the 
space community faces more and more reliability challenges. 
The radiation-induced effects, especially the Single Event 
Upsets (SEUs), are one of the major reliability concerns in the 
design of integrated circuits for space applications [1]. The 
SEU (also commonly known as the soft error) is a transient bit 
flip in memory elements (flip-flops, latches and SRAM cells) 
caused by an energetic particle (e.g. heavy-ions and protons) 
that passes through the sensitive regions within an off-state 
transistor. Due to SEUs, the temporary malfunction or 
complete failure of electronic systems may occur. Therefore, 
the effective mitigation of SEUs in electronic systems for 
space applications is mandatory. 

The Solar Particle Event (SPE) phenomenon is one of the 
main causes of SEUs in space applications [2]. During these 
events, high fluxes of energetic particles are emitted into space 
and this condition can last from several hours up to several 
days [3, 4]. These energetic particles can induce SEUs either 
by direct ionization (heavy-ion-induced) or by ionization 
resulting from nuclear reactions (proton-induced). As the 
particle flux directly determines the Soft Error Rate (SER) of 
an electronic system, it is vital to detect the variation in 
particle flux and consequently activate the suitable radiation 
hardening measures to protect the sensitive electronic sys-
tems. A typical protection solution is the self-adaptive multi-
core processing system, in which the cores can be coupled into 
various rad-hard modes (e.g. Triple Modular Redundancy) 
during the high radiation fluxes. Conversely, when the particle 

flux is low, the high performance modes (all cores execute 
different tasks) or low power mode (some cores are switched 
off) can be employed [5]. 

The detection of SPEs is achieved with particle detectors 
which allow for measuring the particle flux in terms of the soft 
errors induced in the sensing elements [6]. However, in order 
to achieve efficient SEU mitigation and thus maintain the 
functionality of the system, it is important to enable the real-
time prediction of the flux variations, i.e. to predict when an 
SPE will occur. In such a way, the radiation hardening 
mechanisms can be activated before the onset of an SPE and 
then switched off when the SPE ends. This enables to utilize 
efficiently the system resources according to the application 
requirements. To facilitate the SPE prediction in real-time, 
various machine learning algorithms can be applied to train 
the system for predicting the SER variations from the real-
time SER measurements.  

 A number of space applications have employed machine 
learning models for SPE prediction. This was mainly done for 
research purposes, evaluation of space weather conditions and 
planning the space missions [7-9]. However, to the best of our 
knowledge, there is no much of publicly available work on the 
use of machine learning algorithms for predicting the SPEs 
from in-flight SER data, in order to drive the self-adaptive 
fault tolerance in space-borne systems. To minimize the on-
board computational effort, the supervised (off-line trained) 
machine learning approach is the preferred choice for self-
adaptive space applications. In our previous work [10], five 
machine learning models have been investigated for the SER 
prediction one hour in advance, as well as for the fine-grained 
hourly tracking of SER variations during SPEs. It was 
demonstrated that the recurrent neural network (RNN) with 
long short-term memory (LSTM) model and the linear 
regression model provide the best accuracy in SER prediction. 
However, the corresponding hardware implementation has not 
been addressed.  

Considering the high hardware complexity and cost for the 
LSTM network [11], this machine learning model is not 
suitable for implementation in a low-cost embedded design. In 
that regard, in this work we have chosen the linear regression 
machine learning model, which shows an acceptable pre-
diction accuracy with a much simpler implementation than the 
LSTM model. Moreover, a corresponding low-cost hardware 
accelerator design for the prediction of the in-flight SEU rate 
one hour in advance during SPEs and under normal conditions 
is customized. This work uses an embedded on-chip SRAM 
as a real-time particle detector and the linear regression super-
vised machine learning model implemented on a hardware 
accelerator to forecast the SEU rate of SRAM. In this way, the 
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cost and area/power overheads of the proposed design can be 
negligible compared to the host SRAM. The importance of 
such design is the fact that the ability to predict the increased 
radiation levels minimizes the risk that the target system will 
be exposed to adverse conditions without being sufficiently 
protected. 

The rest of the paper is organized as follows. Section II 
gives a brief description of the proposed system. Section III 
explains the data analysis and supervised machine learning 
models training process. The architecture of the proposed 
hardware accelerator is described in Section IV. Analysis of 
results is given in section V. The conclusion and the main 
directions for future work are outlined in section VI. 

II. SYSTEM DESIGN

The block diagram of the system for the prediction of in-
flight SRAM SEUs and SPEs is illustrated in Fig. 1. The basic 
principle is the combination of the offline trained prediction 
model and the online SEU measurement. The predicted rise of 
the SEUs is used to indicate the upcoming SPEs. The 
proposed system consists of four main building blocks 
operating in two phases:  

Online phase – detection of the real-time SRAM SEUs 

in SEU measurement block, and prediction of the following 

SEUs in hardware accelerator block. 

Offline phase – evaluation of the target SRAM SER 

(SEU rate) behaviour during historical solar events in the 

solar condition analysis block, and training of the prediction 

model in the model training block. 

Fig. 1.  Block diagram of the proposed SPE prediction method. 

 The real-time SEU rate measurement is conducted conti-
nuously during the mission. Important is to mention that the 
existing functional SRAM resources are used for SEU 
measurement. Although many previous SRAM-based particle 
monitors have been implemented as standalone chips, for the 
target safety critical applications is important that the particle 
monitor is close to the target system in order to detect the 
radiation conditions to which the target system is exposed. 
With the assistance of Error Detection And Correction 
(EDAC) and scrubbing mechanisms, the existing on-chip 
SRAM can be used to detect SEU rate without affecting its 
function as a storage element. A detailed description of this 
concept can be found in our previous work [6]. The total 

number of detected SEUs in each hour is stored and the 
hardware accelerator model processes the hourly SEU data for 
the prediction of the following upsets number. 

 In the solar condition analysis block, the hourly in-flight 
SER (SEU rate) of SRAM monitor (i.e. SER as function of 
time) is determined using experimentally obtained cross-
section of target SRAM and hourly flux database obtained 
from previous space missions. In this case, according to the 
SPE list from the National Oceanic and Atmospheric 
Administration (NOAA) [12], all 36 SPEs during the solar 
cycle 24 (2008-2019) are selected for the analysis. The 
Geostationary Operational Environmental Satellite-Space 
Environment Monitor (GOES-SEM) [13] and Advanced 
Composition Explorer-Solar Isotope Spectrometer (ACE-SIS) 
[14] public databases have been used for proton and heavy-
ion flux data source, respectively. The working environments 
for the GOES and ACE satellites are all close to the Earth in 
the heliosphere, but outside the Earth’s geomagnetic 
influence. Therefore, the additional radiation impact from 
geomagnetically trapped protons and the shield protection 
from the Earth’s magnetic field can be neglected during the 
following SER estimation. As a case study, a 2 Gbit COTS 
SRAM from Cypress, designed in 65 nm bulk CMOS 
technology, was selected as target SRAM. The proton and 
heavy-ion SEU cross-section data for the selected SRAM is 
available in [15]. Applying the methodology from [16], the 
energy spectra are reconstructed to avoid the issues of data 
gaps, low energy and incomplete ion type measurements from 
raw data. Then, the SRAM cross section and the energy 
spectra are processed by the CREME96 tool [17,18] to obtain 
the hourly SER data. Fig. 2 and Fig. 3 present a sample of the 
obtained proton-induced and heavy-ion-induced hourly SER 
from Jan 22 to 26, 2012, respectively. The observed SER for 
the target SRAM is the sum of the calculated proton and 
heavy-ion induced SER.  

The acquired in-flight hourly SER data from historical 
solar events are processed, transformed as well as train and 
validate selected machine learning models in the model 
training block, which is discussed in Section III. The best 
performing machine learning model is to be implemented as 
the hardware accelerator, and combined with the SRAM-
based SEU monitor for the on-line real-time prediction. 
Therefore, the expected upsets number of the SEU monitor in 
the following hour can be predicted, as described in Section 
IV. Since the SER of an electronic system exposed to radiation
is linearly related to the particle flux [19], the predicted SER 
information can be used to estimate the SER of the target fault 
tolerant multi-processor system, but this is beyond the scope 
of this work. 

Fig 2. Proton-induced SER (SEU rate) from GOES database for Jan 

22-26, 2012. The particle flux for all of the lower to higher energy 

channels are shown, and all channels are with good quality. 



 

Fig. 3. Heavy-ion-induced SER (SEU rate) from ACE-SIS database 

for Jan 22-26, 2012. The particle ion flux of He, O and Fe for the 

lower and higher energy channels are shown, and high-energy 

channels data are of poor quality. 

III. MACHINE LEARNING MODEL SELECTION 

This section elaborates how machine learning techniques 

can be used to predict the in-flight upset rate of the SEU 

monitor in advance by using upset rates of the nh last hours. 

This analysis is based on observations from a previous study 

[10] where several machine learning models have been 

evaluated to predict the hourly SER rate of an SRAM 

memory. In the mentioned study five regression models have 

been analyzed: (1) linear least squares, (2) decision tree, (3) 

k-nearest neighbors, (4) multi-layer perceptron (MLP) neural 

network and (5) recurrent neural network (RNN) with long 

short-term memory (LSTM). It has been observed that the 

RNN with LSTM model performed the best, but the linear 

least squares regression performed almost equally good. This 

is why in this paper the analysis focuses only on these two 

models. 

To perform the prediction first, the in-flight hourly SER 

data acquired from historical solar events is processed and 

transformed in order to be representative to actual upsets 

obtained from the SEU monitor (see section II). The machine 

learning regression model is trained with this transformed 

data acquired from historical solar events. Then the 

prediction of the hourly upset rate by the trained model is 

evaluated. 

A. Pre-processing of the Test and Training Data Set 

The in-flight hourly SER data acquired from historical 

solar events forms the test and training data set for the 

machine learning models. The hourly SER values obtained 

are obtained by processing the hourly flux database, as 

explained in section II. The energy spectra of the flux data is 

reconstructed and together with the SRAM cross-section and 

the CREME96 tool the SEU/bit/day is calculated. In the 

actual system the data from the SEU monitor will be an 

integer number from 0 to the size of the SRAM. To get this 

number of hourly upsets, the SEU/bit/day values are divided 

by 24h and multiplied by the SRAM size. 

Moreover, it is known that most Machine Learning 

models work best when the input data is in the range from 0 

to 1. To achieve this, the actual number of upsets is divided 

by the next power of two of the highest expected numbers of 

upsets. In this way, no actual division need to be implemented 

in hardware since it is just a different representation of the 

input data as fixpoint integer. 

B. Model training 

This processed and transformed data is used to train and 

evaluate the Machine Learning models in a supervised 

manner. The data set was split, whereas 60% of the data is 

used for training and the remaining 40% of the data is used 

for the evaluation.  

During the training process, the internal parameters of 

the Machine learning models are adjusted and optimized by 

the machine learning algorithm. In addition to these internal 

parameters, most of the machine learning models have so 

called hyperparameters to control properties of the machine 

learning model. These hyperparameters however, are not 

determined by the training algorithm and are usually set 

manually before the training process. The problem of finding 

the optimal set of hyperparameters is called hyperparameter 

optimization. To obtain the optimal set, several instances of 

the model are trained and evaluated for different sets of 

hyperparameters. In this paper, first the model is evaluated 

for randomly generated parameter values in a given 

distribution. Afterwards a more detailed grid search is 

performed within the region of the values obtained by the 

random search. 

A different parameter which needs to be optimized for 

the given problem is the optimal length nh for the past hourly 

SEU values needs to be determined. Therefore, models were 

also evaluated for different history length of the hourly SEU 

data. 

C. Model evaulation and comparison 

The performance of selected models was evaluated in 

terms of Mean Absolute Error (MAE), Maximum Absolute 

Error (MAX), Root Mean Square Error (RMSE) and the 

coefficient of determination (R2) score. These scores were 

calculated on the predicted test data set of the trained model. 

In order to obtain a more stable measurement a cross-

validation of 10 was used. This means, the data set is split 

into 10 different train and test data sets which were used to 

independently train and evaluate the models. The scores were 

averaged over the different measurements obtained by 

applying the different sets. In this way, it is avoided that 

particularly good or bad training and test data sets are used. 

The model performance was measured for different 

length of the past hourly SEU data nh, varying between 3h 

and 24h. For each considered nh the above described 

hyperparameter optimization was performed and the model 

performance was measured with the mentioned metrics. Fig. 

4 and Fig 5 show performance of the two considered models 

in terms of R2 and RMSE respectively. It can be seen that both 

models have a high accuracy and the RNN performs slightly 

better than the Linear Least Squares model. The best 

performances are obtained with a past hourly SEU data nh of 

14 for the RNN model and 17 for the linear least squares 

model. 

Although the RNN model might perform slightly better, 

the Linear Least Square model has the advantage that it is 

much simpler and uses significantly less resources than the 

RNN model. Therefore, the Linear Least Square model has 

been chosen for the hardware accelerator in the following 

sections. 



 
Fig. 4. R2 score (higher the better) for the Linear Least Squares and 

RNN regression models with varying history data length nh. 

 
Fig. 5. RMSE (lower the better) for the Linear Least Squares and 

RNN regression models with varying history data length nh. 

 

IV. HARDWARE ACCELERATOR DESIGN 

The hardware accelerator implements the machine learn-

ing algorithm based on the linear regression model. The 

proposed design is intended to collaborate with an SRAM-

based SEU monitor and offline-trained results from selected 

machine learning model. Fig. 4 shows the block diagram of 

the hardware accelerator design as well as the connection 

with collaboration models. Two register files record the 

detected real-time hourly SEU data from the monitor and the 

trained parameter results from the offline machine learning 

model, respectively. An accumulator is used to implement the 

needed calculation. A simple control logic selects the inputs 

and the functionality of the accumulator. The right shifter 

processes the calculated result from the accumulator to obtain 

the predicted SEU data. 

 

Fig. 4.  Proposed hardware accelerator structure with accessories. 
 

According to the trained results from Section III, the best 

accuracy of the SEU prediction can be obtained when the 

history data length is set to 17. Therefore, the corresponding 

prediction function for this case is: 

SEUpred_accx10.0868 * x2 + (-1.1946) * x3 + 
1.0308 * x4 + 0.1016 * x5 + (-0.9142) * x6 + 0.8201 * x7 + (-
0.0178) * x8 + (-0.6824) * x9 + 0.6575 * x10 + (-0.0204) * x11 
+ (-0.4687) * x12+ 0.4181 * x13 + (-0.0271) * x14 + (-0.2207) 
* x15+ 0. 1815 * x16 + (-0.0732) * x17 

The coefficients of the above equation are obtained from 

the trained linear regression machine learning model. The xn 

in function (1) stands for the detected hourly SEU number 

from the monitor in n hours ago, which also means that the 

prediction function can start to work after the monitor 

consecutively works and records the 17-hour data. Since this 

design is intended to be used as an embedded part of space-

borne system, simplicity and flexibility are among the most 

important concerns. Thus, to avoid floating point calculation 

and reduce the hardware complexity, the coefficients in 

function (1) are magnified by 2n times and only taking the 

integer part to simplify the equation. The magnification factor 

needs to ensure that the new prediction equation induced 

accuracy variation is less than 1%. In this study, the 

magnification factor 32 is used, and the corresponding 

prediction function is as follow: 

SEUpred_acc_32 x13 * x2 + (-38) * x3 + 33 * x4 + 3 * 
x5 + (-29) * x6 + 26 * x7 + (-1) * x8 + (-22) * x9 + 21 * x10 + 
(-1) * x11 + (-15) * x12+ 13 * x13 + (-1) * x14 + (-7) * x15+ 6 * 
x16 + (-2) * x17  

Two 32 * 21-bit address register files are used for logging 

the historical SEU data and prediction function coefficients, 

respectively. Regarding the historical SEU data register file, 

a single 21-bit entry consists of a valid entry bit, and a 20-bit 

representing the number of detected upsets. According to the 

historical solar events analysis for the solar cycle 24, which 

is mentioned in Section II, the peak value for the hourly 

upsets count of the target SRAM is 118122 upsets/hour/2G-

bit. Therefore, the size of the selected register file can 

guarantee regular data storage even during large SPE peak 

fluxes. Moreover, up to 32 historical hourly upset records can 

be thus stored simultaneously. If the register file overflows, 

the oldest individual record will be automatically discarded. 

For the coefficients register file, the contents are loaded 

during the system setup and rarely updated during the system 

operation. After being magnified, as shown in function (2), 

the coefficients are stored in each row, separately. A single 

21-bit entry consists of a valid entry bit, a sign bit and a 19-

bit digit. 

The accumulator is used to replace the multiplication 

operation in prediction function by repeated addition 

calculations. Therefore, a much longer calculation time than 

the traditional multiplier is expected. In this study, for 

function (2), a total of 262 clock cycles is needed in the 

accumulator. Therefore, the minimum required time for the 

calculation of function (2) is 5.24 µs when the working 

frequency is 50 MHz. Considering that the historical SEU 

data register file is updated every hour, which means this 

calculation is required only once every hour, the calculation 

speed for the accumulator is sufficient for the current study. 

The accumulator contains a 32-bit full-adder, one two’s 



complement number converter and a 32-bit register. The 

register keeps the intermediate arithmetic result from the 

adder. The inputs for adder are the selected xn and previous 

results from the register. Moreover, the selected xn is 

converted to the two's complement form when the corres-

ponding coefficient identifies a subtraction operation. Con-

sidering the calculation in practical applications, the overflow 

is not expected. 

The control logic is manipulated by the coefficients to 

select the appropriate xn for accumulator as well as determine 

the number of repetitions. The right shifter is used to shrink 

the calculation result based on the previous magnified factor, 

which is 5-bit right shift in this study. Moreover, the hardware 

accelerator can also be affected by radiation particles, thus, 

Triple-Modular Redundant (TMR) flip-flops are used in 

order to enhance their robustness against SEUs [20]. 

 

V. ANALYSIS OF RESULTS 

A. Prediction Performance Analysis 

 In this section, the impact of SRAM size and history data 
size on the prediction performance are analyzed. The analysis 
in Section III was done for a large size SRAM with a size of 

2 Gbit and with history data length of 17. However, many 
embedded systems do not have the multi-Gbit SRAM 
resources, but rather much smaller internal SRAM with the 
size from several Mbit to tens of Mbit. In such a case, the 
small detection area of the SRAM may not provide sufficient 
sensitivity, and it is necessary to evaluate the optimal SRAM 
size that is required for particle detection. Moreover, the 
selection of history data length of 17 means the prediction 
cannot be done for the first 17 hours, which may be too long 
for some scenarios where faster prediction is required. 
According to the history data length analysis in Section III, 
length 4 also has an excellent R2 score with a slightly worse 
RMSE performance. For this case, the prediction equation is: 

SEUpred_fast  = 1.1939 * x1 + 0.1105 * x2 + (-0.7789) * x3 + 

0.4478 * x4             

The magnification factor 1024 is used for the above function, 
thus, the corresponding function implemented in hardware 
accelerator is: 

SEUpred_fast_1024  = (1223 * x1 + 113 * x2 + (-798) * x3 + 459 * 

x4) / 210                            

In Figure 5, the hardware accelerator SEU prediction 
performance for functions (2) and (4) applied to 2 Gbit and 4 
Mbit SRAMs, during large and small SPEs, is illustrated. The 
SEU rate for the assumed 4 Mbit SRAM was determined by 
scaling the SEU rate for 2 Gbit, where the scaling factor is the 
size ratio of the two SRAMs. Although this a rough estimate, 
it is valid for comparison because the SEUs of an SRAM is 
proportional to its size.  

It can be seen that both functions (2) and (4) can predict 
the SEU variation accurately for the small and large SPEs with 
2 Gbit SRAM. However, with 4 Mbit SRAM only the large 
SPE can be predicted while neither of these equations can 
work well during a small SPE. The main reason is that the 
SEU monitor with 4 Mbit SRAM does not have sufficient 

Fig. 5. Hardware accelerator SEU prediction performance for 2Gbit and 4 Mbit SRAM during large and small SPEs, respectively. 

The function (2) is the prediction function with history data length 17 and magnification factor 32. The function (4) represents the 

prediction with history data length 4 and magnification factor 1024.   

 

Fig. 6. Hardware accelerator SEU prediction performance for 20 

Mbit SRAM during a small SPE on Mar 08, 2011. 

 

 

 



resolution to provide valid SEU data for prediction during the 
SPE on-set period.  

In Fig. 6, the prediction performance for 20 Mbit SRAM 
during the same small SPE as previous is shown. It can be seen 
that the 20 Mbit SRAM can predict the small SPEs. In 
addition, due to not considering too much historical SEU data 
with low resolution, the function (4) has a better prediction 
performance than function (2). In order to get a smoother 
prediction curve than in Fig. 6 and thus ensure good quality of 
SPE prediction, a larger SRAM area needs to be used. 

B. Synthesis Results 

Since the hardware accelerator is intended to be imple-

mented together with SRAM and SEU monitor on a single 

chip, it is essential to investigate the introduced overheads of 

the power and area. The following synthesis results are for 

the IHP’s 130 nm bulk CMOS technology with the supply 

voltage of 1.2V, and the operating nominal frequency of 50 

MHz. Although the synthesis analysis in this section uses 

different technology than the analyzed SRAM, the results are 

of significant value for hardware consumption comparison 

because the proposed design is general and can be 

implemented in different technologies. The choice of the 

target technology will define the SRAM’s cross-section 

which is obtained from irradiation experiments.  

Tables I shows the total power and area comparison for 

20 Mbit SRAM, SEU monitor and proposed hardware 

accelerator. Even though the introduced area and power 

consumption of proposed hardware accelerator is about 10 

times larger than the SEU monitor, compared with 20 Mbit 

SRAM, the induced power and area consumption are only 

0.8% and 4.5%, respectively. Therefore, the results show that 

the cost and overhead for the hardware accelerator are 

negligible compared to the host SRAM. 

TABLE I.  AREA (IN  mm2)  AND POWER (IN  mW) COMPARISON 

 Area Power  

20 Mbit SRAM 14 384 

SEU Monitor 0.0957 0.211 

Hardware Acc. 0.642 3.23 

 

VI. CONCLUSION AND FUTURE WORK 

 A low-cost hardware accelerator for the in-flight SEU 
variation prediction of the on-board SEU monitor system for 
space applications is presented. The upcoming large flux 
event, such as SPE, can be indicated from the predicted rise 
of SEU rate at least one hour in advance. Moreover, the fine-
grained hourly tracking of SEU variations is supported. The 
concept combines the online SEU prediction with an SRAM-
based particle detector and supervised machine learning 
prediction model trained offline with publicly available flux 
databases from past space missions. Our analysis has shown 
that the linear regression machine learning model has a very 
good prediction accuracy for the analyzed application, and 
can be implemented in the hardware accelerator with a negli-
gible cost. 

There are still open issues which have to be addressed in 

future work. Firstly, the accuracy of the prediction model can 

be further improved and the prediction time can be extended 

beyond one hour. The accuracy can be improved by providing 

the real-time measurement of particle LET, which can be 

used as additional input parameter for the machine learning 

algorithm. Furthermore, it is necessary to integrate the SEU 

monitor and the hardware accelerator proposed in an adaptive 

multicore system on a single chip, and establish a model for 

estimating the SER of the multicore system in terms of the 

SER of SEU monitor.  
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