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Abstract – The increased design complexity and appearance 

of emerging embedded systems are leading to more pronounced 

challenges related to errors. Traditional approaches for 

addressing faults include the redundancy approaches in 

hardware, time, software, and /or information. But the overhead 

of these methods is not acceptable for many mixed-criticality 

applications, and consequently, we need some means to achieve 

the dynamical trade-off in safety, reliability, performance and 

power consumption. This paper presents the initial steps of a PhD 

work focusing on exploring the adaptive use of the fault tolerance 

mechanisms in multiprocessing architectures and development 

methods for adaptive cross-layer optimization approaches. 

I.  INTRODUCTION 

Fault tolerance is the property that keeps the system not 

deviating from the correct operation in the presence of faults 

[1]. Along with the technology scaling, increasing gate 

complexity could be integrated into a single chip. Today’s 

embedded systems are susceptible to faults from various 

sources, i.e. radiation particles, voltage variations, crosstalk, 

technology defects, etc. Moreover, the failure mechanisms of 

radiation-induced soft-errors, circuit ageing effects, early-life 

failures and variability become critical [2]. The high energy 

particles can cause the radiation-included soft errors by 

inducing bit flips in the registers or logic [3]. Generally, 

radiation-induced soft-errors are mainly relevant for mission-

critical systems such as space, avionics or certain military 

applications, but with technology scaling and the decrease of 

critical charge are starting to be important also for terrestrial 

applications. Additionally, ageing effects degrade the circuit 

performance over time, and even eventually the permanent 

internal faults could occur. There are significant ageing effects 

in CMOS ICs that are related to the degradation of the gate-

oxide, where Bias Temperature Instability (BTI) [5], Hot 

Carrier Injection (HCI) [6] and Time-Dependent Dielectric 

Breakdown (TDDB) [5] are the dominant drift-related ageing 

effects. Moreover, there are early-life failures caused by 

defective ICs which pass manufacturing tests but fail in the 

infant mortality period. Furthermore, the burn-in tests for 

screening early-life failures are becoming more and more 

important but also make the tests more expensive [9]. The 

errors could also be generated due to the variability, and 

according to [7][8], the major concerns come from threshold 

voltage variations, channel length variations and 

voltage/thermal variations, etc. 

There are a lot of publications on the techniques to 

address the above issues, and most of them focus on the 

improvement on single abstraction layers in the system design. 

Instead of improving the efficiency of the fault tolerance 

mechanisms in the individual layers, the more promising way 

to achieve an effective and reliable system operation is to 

utilize the different available approaches or parameters at 

multiple abstraction layers and combine them to optimize the 

design in a cross-layer manner. For example, the structural 

integrity checking [11], addressing both architecture and 

software layers, can have less hardware cost than the 

traditional code checkers. Also, the error detection (e.g. using 

logic parity checking and residue code) and instruction-level 

retry [12] include improvements at the circuit, logic and 

architecture layers, and this approach can lead to higher 

reliability features of the RISC processors. Cross-layer fault 

tolerance systems have the potential to achieve higher 

performance, more reliable operation, lower cost and lower 

power consumption by taking advantage of the information 

and capabilities available across different layers in the system 

stack [10]. 

However, it’s a challenge to develop an integrated cross-

layer fault tolerance system concept. Not only that designer 

needs to develop the techniques for breaking through the 

current abstraction layers, but it also requires to perform 

comprehensive and thorough analysis and optimization of the 

existing techniques at the different layers. This paper reports 

the initial investigations in the author’s PhD research in the 

field of evaluating and developing methods to achieve cross-

layer fault tolerance and try to integrate and characterize these 

methods into an adaptive multiprocessing platform which has 

been developed at IHP [26]. 

The paper is organized as follows. Section II introduces 

the methods for the layered fault tolerance. Section III presents 

an overview of the current technologies in cross-layer fault 

tolerance. Section IV studies the multiprocessing architecture. 

Section V presents the ongoing and future work. The 

conclusions are summarized in Section VI. 

II. SINGLE-LAYER APPROACHES

Firstly, let us look at the basic concepts of fault tolerance. 

Fault tolerance is a way to exploit and manage redundancy [1] 

to mask faults or errors when they appear. Basically, there are 

four types of redundancies: hardware, software, information 
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and time. Hardware redundancy is achieved by involving extra 

hardware to detect or mask the effects of the failed component.  

 
Fig. 1 Abstraction layers of a computing system 

 

The well-known example is the triple modular redundancy 

(TMR), in which three components perform the same 

operation and a voter is selecting an output. However, the 

hardware redundancy always incurs high overhead. The 

information redundancy is usually applied with the error 

detecting and correction coding approaches, such as adding 

one or more extra check bits to the original data. Nowadays, 

the information redundancy is widely used in various storage 

devices, due to their regular structure. Time redundancy 

attempts to reduce the amount of extra hardware by adding 

extra computational time. It is effective for the mitigation of 

transient faults through re-execution the same program on the 

same hardware. Finally, the software redundancy attempts to 

mitigate the software failures. 

 Every computing system can be abstracted into several 

layers (Figure 1). Traditionally, the faults are dealt in the 

corresponding abstraction layers where they are detected. The 

following list summarizes the different important techniques 

for fault tolerance corresponding on different layers: 

 Circuit layer: At the lowest layer, faults are 

depending on the circuit design and basic physical 

properties [15]. As one of many examples of such 

techniques, hardened flip-flop design called LEAP-

DICE [16] uses a Dual-interlocked cell (DICE) and 

Layout design through Error Aware transistor 

Positioning (LEAP) technology. The LEAP-DICE is 

able to tolerate single-event upsets (SEUs) and single-

event multiple upsets (SEMUs) at the nominal or near 

threshold voltage. The use of this technique allows a 

dramatic decrease of the single-event error rates 

without significant influence on the performance. 

Nevertheless, the drawback is the incensement of the 

power and area overheads (mainly due to complex 

DICE architecture) 

 Logic layer: In this level, the digital system is 

assembled with various gates and memory elements, 

and the signals are represented as binary values. As 

an example, the SRAM-based caches and DRAM-

based main memory usually use the Error Correcting 

Codes (ECC) [17] to protect their data. The various 

Single-bit-Error-Correcting and Double-bit-Error-

Detecting (SEC-DED) codes are widely used in many 

systems. Additionally, the Double-bit-Error-

Correcting and Triple-bit-Error-Detecting (DEC-

TED) codes are the robust way to cope with multi-bit 

errors. However, depending on the implementations, 

the ECC induces significant storage overheads. 

 Architecture layer: Here the faults are typically 

detected as observed changes in one or more 

modules’ behavior. The nice example is the Dynamic 

Implementation Verification Architecture (DIVA) 

[18] presents a monitor core which is a specialized 

checker in the cores to validate executed instructions. 

Furthermore, this novel technique can dramatically 

reduce the error rate in microprocessor design. On the 

other hand, the costs associated with the DIVA 

checker are silicon area, power consumption and 

slowing down the core processor. 

 Software layer: Software-based fault tolerances 

typically duplicate the code and data segments, run 

and compare the results. One example is the 

Duplication with Comparison (DWC) technique. This 

technique can detect the error by executing an 

algorithm twice and compare the result. However, 

this method cannot identify the correct result [14]. 

Error Detection by Duplicated Instructions (EDDI) 

can duplicate instructions via compilation and arrange 

the different registers and variables for the duplicated 

instructions. Additionally, it does not need extra 

hardware overhead [14]. 

 Algorithm layer: The Algorithm-Based Fault 

Tolerance (ABFT) can detect or correct faults by 

modifying the algorithms [19]. For example, in the 

paper [20], the author presents an ABFT solution for 

dynamic molecular applications. This algorithm can 

map the kernel to a matrix and recover from the error 

state after it is detected. Furthermore, this application 

is able to recover from the latest checkpoint or 

repeating the corrupted computation. 

 The substantial disadvantage of the layered approach is 

that the different system layers are considered separately. Due 

to the fact that upper layer cannot specify the requirements and 

achieve the cooperation with the lower layer, the unnecessary 

error correction and resource underutilization is possible. 

   

III. CROSS-LAYER APPROACHES 

 In contrast to the traditional single-layer fault tolerance 

approach, the cross-layer way can provide better performance 

and effectiveness for the system [10]. Since the layer barriers 

are not a limitation for fault-mitigation, the implementation of 

some appropriate combination of methods to meet the design 

constraints is possible. However, performing the cross-layer 

approaches requires broad knowledge and understanding of 

the whole system, such as when and where faults appear, how 

faults can generate errors, how errors can propagate and be 



mitigated across layers, and how errors impact the system 

performance. 

One of the initial studies of cross-layer approaches is 

provided in [25]. The authors use the Simulated Annealing 

optimization algorithm to evaluate the overall system 

reliability by selecting the best-identified combination of 

software and hardware components, with a certain cost 

constraint. Although this technique can be efficient and 

generate the satisfactory results when the difficult-to-satisfy 

restrictions are needed, the reliability models are too idealistic. 

Only one single failure probability is considered for each 

component, and the cost function is merely the sum of cost in 

each element. 

The inter-layer information flow can make the runtime 

performance (such as power, ageing) analysis possible, and let 

the investigation of cross-layer and dynamic runtime 

adaptation techniques possible. In [21], the authors show a 

cross-layer ageing analysis platform, which can perform the 

ageing modelling, simulation and mitigation by using multi-

objective cross-layer approaches. Two platforms are proposed, 

and these platforms cover the circuit, logic and architecture 

layers. The first platform proposes an inaccurate ageing model, 

which is developed at the architecture level. It takes 

architecture information of power, temperature (collect from 

the on-die power and thermal sensors) and usages of 

architecture blocks (e.g. ALU, decoder) as input. The ageing 

model can estimate the ageing rate of different block and the 

usage (switching activity, ON time, OFF time) of each block. 

However, the above model is hard to evaluate circuit-level 

ageing mitigation techniques. Then, the authors propose an 

RTL-platform, which is based on EDA (electronic design 

automation) process such as circuit simulators, gate-level 

ageing models, etc. This platform allows very accurate 

analysis of power, ageing and area cost, but the flexibility 

compared to the first approach is significantly reduced.  

Design of cross-layer fault tolerance system doesn’t need 

to develop new fault tolerance techniques. It can be achieved 

by combining the existing techniques related to different 

layers. Cross-Layer Exploration for Architecting Resilience 

(CLEAR) [10] is the first framework to propose an impressive 

and accurate simulation campaign exploring how to achieve 

desired reliability goals with the minimal costs (area, 

execution time, power, energy) through combining resilience 

techniques [26] on different abstraction layers. It can explore 

the vast space of comprehensive resilience techniques 

automatically and systematically, and form 586 cross-layer 

combinations across different layers in the system stack. In 

total, ten different error detection and correction techniques 

and four hardware error recovery techniques are used in the 

resilience library for different layers. Finally, the top-down 

approach, which resilience techniques are applied at highest 

layer firstly, is used to achieve the cost-effectiveness of 

various combinations. The result shows that a proper 

combination of hardening circuit-level, parity checking in 

logic-level, and micro-architectural recovery for the general-

purpose processor core can achieve a high cost-effective 

radiation-induced soft errors resilience method. However, if 

every new product is performing the same simulation, the cost 

would be high in the early stage. Currently, this framework 

only concentrates on radiation-induced soft errors. 

 

IV. FAULT TOLERANCE IN MULTIPROCESSING 

SYSTEMS 

A single computer system with more than one Central 

Processing Units (CPUs) that share the various hardware 

resources is called multiprocessing system, or, multiprocessor 

[13]. The concept of multiprocessing system has been known 

for decades. In the last years, multiprocessing system has 

become the primary architecture because of two reasons. 

Firstly, the performance of single processors has already 

reached the upper limit, which is the point of diminishing 

returns. Secondly, because of the excessive power 

consumption, the working frequency cannot be increased [22]. 

Nowadays, the use of the multiprocessing architectures starts 

to be the dominant trend in all computing segments, such as 

desktop, server and embedded. Because of these computing 

segments can present an excellent processing power to 

programs, which could be divided into smaller procedures and 

processed in parallel. Moreover, the multiprocessing 

architecture can also have the advantages of high throughput, 

high energy efficiency, long-lasting battery life [27] etc. 

 

 
Fig. 2 General architecture of framed multiprocessor 

 

In [22], a flexible and scalable multiprocessor architecture 

framework is proposed, which can dynamically configure its 

properties concerning performance, power consumption and 

dependability. Figure 2 shows the multiprocessing platform 

which has been developed at IHP. The main idea of this 

framework is to dynamically adapt the fault tolerance and 

performance under the constraints of the system ageing and 

power dissipation. In order to dynamically change the 

reliability and performance requirements of multiprocessor 

applications, three basic multiprocessor operation modes (de-

stress, fault-tolerance, high-performance) are implemented: 

 De-stress mode: The goal of this mode is to increase 

the multiprocessor lifetime and reduce the power 

consumption. As a consequence, a minimum required 

the number of multiprocessor cores is active, while all 

the others are inactive. The IC ageing monitors could 

supply the ageing information to core gating patterns. 

These patterns can systematically power- or clock-off 

cores in this multiprocessor. 

 Fault-tolerance mode: In this mode, the 

multiprocessor cores are used to form core-level 

NMR (N-modular redundancy) system, in order to 



increases error resilience. Therefore, the entire cores 

are synchronized to run the same task concurrently. 

Furthermore, a core-level programmable NMR voter 

is designed to let the cores vote on each clock cycle. 

This core-level NMR can mask faults without 

requesting recovery procedures. 

 High-performance mode: In this mode, the 

multiprocessor boosts multiprocessor performance 

and act the same as a conventional multiprocessor. 

These modes can dynamically be changed under the actual 

application requirements. Furthermore, this multiprocessor 

framework consists of: 

 Framework controllers: This is the hardware part of 

this framework, and it’s in charge of 

coupling/decoupling the modules to/from the power 

supply or clock and forms NMR systems. 

 Framework middleware: This is a layer to hide the 

hardware details and offer the services to the 

application layer.  

 Application layer: This part can call the middleware 

routines, in order to program the framework 

controllers and read their status. 

The interconnection network can enable scalability and 

redundant links for these modules. And the modules could be 

the processing elements, cores with or without cores or 

memory modules. 

A novel environment for automated fault injection and a 

novel multiprocessor verification platform are used to evaluate 

this multiprocessing platform. Furthermore, a novel lifetime 

evaluation approach based on the Weibull distribution shows 

the advantages of using the core gating patterns can increase 

the system’s lifetime for over 30% compared to the traditional 

Round-Robin approach. 

 

V. ONGOING AND FUTURE WORK 

The ongoing research activities have been focused on the 

above multiprocessing platform with the additional cross-layer 

fault tolerance mechanisms, and evaluation the benefits and 

costs.  

The above multiprocessing platform could be deployed in 

a harsh environment which could include the effects of high 

energy particles and the expected lifetime could be long. In 

order to manage available hardware resources and monitor 

operating environment of the chip, the additional on-chip 

sensors are required, such as more accurate ageing monitor, 

voltage and temperature sensors. Such sensors must be 

seamlessly integrated into the operation of a complex multi-

processor system. In the applications where soft errors, 

induced by radiation, play a significant role, the detection of 

such errors need to be monitored as well. Moreover, the period 

of high flux radiation in space could be quite long [24]. 

Consequently, the integration of an on-chip radiation sensor to 

trigger the dynamic hardening of the system could increase the 

reliability. 

The optimized task scheduling and adaptive mode 

switching could be an effective method to increase the lifetime 

and overall energy consumption in the software layer. These 

methods could be carefully tailored to fit to dynamically 

changing reliability requirements of the application. Moreover, 

exploiting a novel compiler which can automatically 

redundancy some critical instruction and adapt to the compiler 

level multiprocessing operation. 

In order to correctly and adequately operate and adjust the 

system, it is crucial to characterize different settings 

concerning power, performance, and reliability features. 

Considering that there is a countless number of possibilities for 

such settings, the modelling of the parameters based on the 

characterized and mathematical model, such as a system-level 

Bayesian reliability estimation model [28], could help us to 

estimate the features of the not fully characterized states. 

Moreover, the functional relationship between the parameters 

and the different technologies across different abstract layers 

should be investigated. 

More modalities can be developed, such as mixed mode 

which one core work in de-stress mode and the other cores 

work in fault tolerance mode. Furthermore, some spare module 

with particular technologies, such as DICE-LEAP design, 

adaptive voltage scaling can be deployed in the platform. 

 

 
Fig. 3 The conception of the cross-layer fault-tolerance 

framework 

 

Breaking the abstraction layers divisions will lead to the 

possibility of building a cross-layer fault tolerance framework, 

which can comprehensively introduce the above or other 

techniques corresponding to different layers. Each technique 

can be modularized, so it is feasible to operate these modules 

separately and dynamically. This could include activation and 

inactivation of the module (in hardware or software) at the 

various levels during the runtime. The integrated platform can 

automatically explore the different modules combination 

across multiple layers, in order to achieve the different 

constraints or targets during operation. 

 

VI. CONCLUSIONS 

In the previous sections, we have presented the basic 

concepts of simple and cross-layered fault tolerance 

approaches, as well as a baseline adaptive multiprocessing 

platform. Our short-term plans to verify the ideas presented in 



the above section. In particular, we would like to characterize 

and model different schemes of cross-layer fault tolerance, and 

implement and evaluate it in the provided multiprocessor 

platform.  
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