
Engineering of Cross-Layer Fault Tolerance

In Multiprocessing Systems

Junchao Chen1, Milos Krstic1, 2

1IHP, Frankfurt (Oder), Germany
2University of Potsdam, Germany

Email:{chen,krstic}@ihp-microelectronics.com

Abstract – The increased design complexity and appearance

of emerging embedded systems are leading to more pronounced

challenges related to errors. Traditional approaches for

addressing faults include the redundancy approaches in

hardware, time, software, and /or information. But the overhead

of these methods is not acceptable for many mixed-criticality

applications, and consequently, we need some means to achieve

the dynamical trade-off in safety, reliability, performance and

power consumption. This paper presents the initial steps of a PhD

work focusing on exploring the adaptive use of the fault tolerance

mechanisms in multiprocessing architectures and development

methods for adaptive cross-layer optimization approaches.

I. INTRODUCTION

Fault tolerance is the property that keeps the system not

deviating from the correct operation in the presence of faults

[1]. Along with the technology scaling, increasing gate

complexity could be integrated into a single chip. Today’s

embedded systems are susceptible to faults from various

sources, i.e. radiation particles, voltage variations, crosstalk,

technology defects, etc. Moreover, the failure mechanisms of

radiation-induced soft-errors, circuit ageing effects, early-life

failures and variability become critical [2]. The high energy

particles can cause the radiation-included soft errors by

inducing bit flips in the registers or logic [3]. Generally,

radiation-induced soft-errors are mainly relevant for mission-

critical systems such as space, avionics or certain military

applications, but with technology scaling and the decrease of

critical charge are starting to be important also for terrestrial

applications. Additionally, ageing effects degrade the circuit

performance over time, and even eventually the permanent

internal faults could occur. There are significant ageing effects

in CMOS ICs that are related to the degradation of the gate-

oxide, where Bias Temperature Instability (BTI) [5], Hot

Carrier Injection (HCI) [6] and Time-Dependent Dielectric

Breakdown (TDDB) [5] are the dominant drift-related ageing

effects. Moreover, there are early-life failures caused by

defective ICs which pass manufacturing tests but fail in the

infant mortality period. Furthermore, the burn-in tests for

screening early-life failures are becoming more and more

important but also make the tests more expensive [9]. The

errors could also be generated due to the variability, and

according to [7][8], the major concerns come from threshold

voltage variations, channel length variations and

voltage/thermal variations, etc.

There are a lot of publications on the techniques to

address the above issues, and most of them focus on the

improvement on single abstraction layers in the system design.

Instead of improving the efficiency of the fault tolerance

mechanisms in the individual layers, the more promising way

to achieve an effective and reliable system operation is to

utilize the different available approaches or parameters at

multiple abstraction layers and combine them to optimize the

design in a cross-layer manner. For example, the structural

integrity checking [11], addressing both architecture and

software layers, can have less hardware cost than the

traditional code checkers. Also, the error detection (e.g. using

logic parity checking and residue code) and instruction-level

retry [12] include improvements at the circuit, logic and

architecture layers, and this approach can lead to higher

reliability features of the RISC processors. Cross-layer fault

tolerance systems have the potential to achieve higher

performance, more reliable operation, lower cost and lower

power consumption by taking advantage of the information

and capabilities available across different layers in the system

stack [10].

However, it’s a challenge to develop an integrated cross-

layer fault tolerance system concept. Not only that designer

needs to develop the techniques for breaking through the

current abstraction layers, but it also requires to perform

comprehensive and thorough analysis and optimization of the

existing techniques at the different layers. This paper reports

the initial investigations in the author’s PhD research in the

field of evaluating and developing methods to achieve cross-

layer fault tolerance and try to integrate and characterize these

methods into an adaptive multiprocessing platform which has

been developed at IHP [26].

The paper is organized as follows. Section II introduces

the methods for the layered fault tolerance. Section III presents

an overview of the current technologies in cross-layer fault

tolerance. Section IV studies the multiprocessing architecture.

Section V presents the ongoing and future work. The

conclusions are summarized in Section VI.

II. SINGLE-LAYER APPROACHES

Firstly, let us look at the basic concepts of fault tolerance.

Fault tolerance is a way to exploit and manage redundancy [1]

to mask faults or errors when they appear. Basically, there are

four types of redundancies: hardware, software, information

“© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.”

and time. Hardware redundancy is achieved by involving extra

hardware to detect or mask the effects of the failed component.

Fig. 1 Abstraction layers of a computing system

The well-known example is the triple modular redundancy

(TMR), in which three components perform the same

operation and a voter is selecting an output. However, the

hardware redundancy always incurs high overhead. The

information redundancy is usually applied with the error

detecting and correction coding approaches, such as adding

one or more extra check bits to the original data. Nowadays,

the information redundancy is widely used in various storage

devices, due to their regular structure. Time redundancy

attempts to reduce the amount of extra hardware by adding

extra computational time. It is effective for the mitigation of

transient faults through re-execution the same program on the

same hardware. Finally, the software redundancy attempts to

mitigate the software failures.

 Every computing system can be abstracted into several

layers (Figure 1). Traditionally, the faults are dealt in the

corresponding abstraction layers where they are detected. The

following list summarizes the different important techniques

for fault tolerance corresponding on different layers:

 Circuit layer: At the lowest layer, faults are

depending on the circuit design and basic physical

properties [15]. As one of many examples of such

techniques, hardened flip-flop design called LEAP-

DICE [16] uses a Dual-interlocked cell (DICE) and

Layout design through Error Aware transistor

Positioning (LEAP) technology. The LEAP-DICE is

able to tolerate single-event upsets (SEUs) and single-

event multiple upsets (SEMUs) at the nominal or near

threshold voltage. The use of this technique allows a

dramatic decrease of the single-event error rates

without significant influence on the performance.

Nevertheless, the drawback is the incensement of the

power and area overheads (mainly due to complex

DICE architecture)

 Logic layer: In this level, the digital system is

assembled with various gates and memory elements,

and the signals are represented as binary values. As

an example, the SRAM-based caches and DRAM-

based main memory usually use the Error Correcting

Codes (ECC) [17] to protect their data. The various

Single-bit-Error-Correcting and Double-bit-Error-

Detecting (SEC-DED) codes are widely used in many

systems. Additionally, the Double-bit-Error-

Correcting and Triple-bit-Error-Detecting (DEC-

TED) codes are the robust way to cope with multi-bit

errors. However, depending on the implementations,

the ECC induces significant storage overheads.

 Architecture layer: Here the faults are typically

detected as observed changes in one or more

modules’ behavior. The nice example is the Dynamic

Implementation Verification Architecture (DIVA)

[18] presents a monitor core which is a specialized

checker in the cores to validate executed instructions.

Furthermore, this novel technique can dramatically

reduce the error rate in microprocessor design. On the

other hand, the costs associated with the DIVA

checker are silicon area, power consumption and

slowing down the core processor.

 Software layer: Software-based fault tolerances

typically duplicate the code and data segments, run

and compare the results. One example is the

Duplication with Comparison (DWC) technique. This

technique can detect the error by executing an

algorithm twice and compare the result. However,

this method cannot identify the correct result [14].

Error Detection by Duplicated Instructions (EDDI)

can duplicate instructions via compilation and arrange

the different registers and variables for the duplicated

instructions. Additionally, it does not need extra

hardware overhead [14].

 Algorithm layer: The Algorithm-Based Fault

Tolerance (ABFT) can detect or correct faults by

modifying the algorithms [19]. For example, in the

paper [20], the author presents an ABFT solution for

dynamic molecular applications. This algorithm can

map the kernel to a matrix and recover from the error

state after it is detected. Furthermore, this application

is able to recover from the latest checkpoint or

repeating the corrupted computation.

 The substantial disadvantage of the layered approach is

that the different system layers are considered separately. Due

to the fact that upper layer cannot specify the requirements and

achieve the cooperation with the lower layer, the unnecessary

error correction and resource underutilization is possible.

III. CROSS-LAYER APPROACHES

 In contrast to the traditional single-layer fault tolerance

approach, the cross-layer way can provide better performance

and effectiveness for the system [10]. Since the layer barriers

are not a limitation for fault-mitigation, the implementation of

some appropriate combination of methods to meet the design

constraints is possible. However, performing the cross-layer

approaches requires broad knowledge and understanding of

the whole system, such as when and where faults appear, how

faults can generate errors, how errors can propagate and be

mitigated across layers, and how errors impact the system

performance.

One of the initial studies of cross-layer approaches is

provided in [25]. The authors use the Simulated Annealing

optimization algorithm to evaluate the overall system

reliability by selecting the best-identified combination of

software and hardware components, with a certain cost

constraint. Although this technique can be efficient and

generate the satisfactory results when the difficult-to-satisfy

restrictions are needed, the reliability models are too idealistic.

Only one single failure probability is considered for each

component, and the cost function is merely the sum of cost in

each element.

The inter-layer information flow can make the runtime

performance (such as power, ageing) analysis possible, and let

the investigation of cross-layer and dynamic runtime

adaptation techniques possible. In [21], the authors show a

cross-layer ageing analysis platform, which can perform the

ageing modelling, simulation and mitigation by using multi-

objective cross-layer approaches. Two platforms are proposed,

and these platforms cover the circuit, logic and architecture

layers. The first platform proposes an inaccurate ageing model,

which is developed at the architecture level. It takes

architecture information of power, temperature (collect from

the on-die power and thermal sensors) and usages of

architecture blocks (e.g. ALU, decoder) as input. The ageing

model can estimate the ageing rate of different block and the

usage (switching activity, ON time, OFF time) of each block.

However, the above model is hard to evaluate circuit-level

ageing mitigation techniques. Then, the authors propose an

RTL-platform, which is based on EDA (electronic design

automation) process such as circuit simulators, gate-level

ageing models, etc. This platform allows very accurate

analysis of power, ageing and area cost, but the flexibility

compared to the first approach is significantly reduced.

Design of cross-layer fault tolerance system doesn’t need

to develop new fault tolerance techniques. It can be achieved

by combining the existing techniques related to different

layers. Cross-Layer Exploration for Architecting Resilience

(CLEAR) [10] is the first framework to propose an impressive

and accurate simulation campaign exploring how to achieve

desired reliability goals with the minimal costs (area,

execution time, power, energy) through combining resilience

techniques [26] on different abstraction layers. It can explore

the vast space of comprehensive resilience techniques

automatically and systematically, and form 586 cross-layer

combinations across different layers in the system stack. In

total, ten different error detection and correction techniques

and four hardware error recovery techniques are used in the

resilience library for different layers. Finally, the top-down

approach, which resilience techniques are applied at highest

layer firstly, is used to achieve the cost-effectiveness of

various combinations. The result shows that a proper

combination of hardening circuit-level, parity checking in

logic-level, and micro-architectural recovery for the general-

purpose processor core can achieve a high cost-effective

radiation-induced soft errors resilience method. However, if

every new product is performing the same simulation, the cost

would be high in the early stage. Currently, this framework

only concentrates on radiation-induced soft errors.

IV. FAULT TOLERANCE IN MULTIPROCESSING

SYSTEMS

A single computer system with more than one Central

Processing Units (CPUs) that share the various hardware

resources is called multiprocessing system, or, multiprocessor

[13]. The concept of multiprocessing system has been known

for decades. In the last years, multiprocessing system has

become the primary architecture because of two reasons.

Firstly, the performance of single processors has already

reached the upper limit, which is the point of diminishing

returns. Secondly, because of the excessive power

consumption, the working frequency cannot be increased [22].

Nowadays, the use of the multiprocessing architectures starts

to be the dominant trend in all computing segments, such as

desktop, server and embedded. Because of these computing

segments can present an excellent processing power to

programs, which could be divided into smaller procedures and

processed in parallel. Moreover, the multiprocessing

architecture can also have the advantages of high throughput,

high energy efficiency, long-lasting battery life [27] etc.

Fig. 2 General architecture of framed multiprocessor

In [22], a flexible and scalable multiprocessor architecture

framework is proposed, which can dynamically configure its

properties concerning performance, power consumption and

dependability. Figure 2 shows the multiprocessing platform

which has been developed at IHP. The main idea of this

framework is to dynamically adapt the fault tolerance and

performance under the constraints of the system ageing and

power dissipation. In order to dynamically change the

reliability and performance requirements of multiprocessor

applications, three basic multiprocessor operation modes (de-

stress, fault-tolerance, high-performance) are implemented:

 De-stress mode: The goal of this mode is to increase

the multiprocessor lifetime and reduce the power

consumption. As a consequence, a minimum required

the number of multiprocessor cores is active, while all

the others are inactive. The IC ageing monitors could

supply the ageing information to core gating patterns.

These patterns can systematically power- or clock-off

cores in this multiprocessor.

 Fault-tolerance mode: In this mode, the

multiprocessor cores are used to form core-level

NMR (N-modular redundancy) system, in order to

increases error resilience. Therefore, the entire cores

are synchronized to run the same task concurrently.

Furthermore, a core-level programmable NMR voter

is designed to let the cores vote on each clock cycle.

This core-level NMR can mask faults without

requesting recovery procedures.

 High-performance mode: In this mode, the

multiprocessor boosts multiprocessor performance

and act the same as a conventional multiprocessor.

These modes can dynamically be changed under the actual

application requirements. Furthermore, this multiprocessor

framework consists of:

 Framework controllers: This is the hardware part of

this framework, and it’s in charge of

coupling/decoupling the modules to/from the power

supply or clock and forms NMR systems.

 Framework middleware: This is a layer to hide the

hardware details and offer the services to the

application layer.

 Application layer: This part can call the middleware

routines, in order to program the framework

controllers and read their status.

The interconnection network can enable scalability and

redundant links for these modules. And the modules could be

the processing elements, cores with or without cores or

memory modules.

A novel environment for automated fault injection and a

novel multiprocessor verification platform are used to evaluate

this multiprocessing platform. Furthermore, a novel lifetime

evaluation approach based on the Weibull distribution shows

the advantages of using the core gating patterns can increase

the system’s lifetime for over 30% compared to the traditional

Round-Robin approach.

V. ONGOING AND FUTURE WORK

The ongoing research activities have been focused on the

above multiprocessing platform with the additional cross-layer

fault tolerance mechanisms, and evaluation the benefits and

costs.

The above multiprocessing platform could be deployed in

a harsh environment which could include the effects of high

energy particles and the expected lifetime could be long. In

order to manage available hardware resources and monitor

operating environment of the chip, the additional on-chip

sensors are required, such as more accurate ageing monitor,

voltage and temperature sensors. Such sensors must be

seamlessly integrated into the operation of a complex multi-

processor system. In the applications where soft errors,

induced by radiation, play a significant role, the detection of

such errors need to be monitored as well. Moreover, the period

of high flux radiation in space could be quite long [24].

Consequently, the integration of an on-chip radiation sensor to

trigger the dynamic hardening of the system could increase the

reliability.

The optimized task scheduling and adaptive mode

switching could be an effective method to increase the lifetime

and overall energy consumption in the software layer. These

methods could be carefully tailored to fit to dynamically

changing reliability requirements of the application. Moreover,

exploiting a novel compiler which can automatically

redundancy some critical instruction and adapt to the compiler

level multiprocessing operation.

In order to correctly and adequately operate and adjust the

system, it is crucial to characterize different settings

concerning power, performance, and reliability features.

Considering that there is a countless number of possibilities for

such settings, the modelling of the parameters based on the

characterized and mathematical model, such as a system-level

Bayesian reliability estimation model [28], could help us to

estimate the features of the not fully characterized states.

Moreover, the functional relationship between the parameters

and the different technologies across different abstract layers

should be investigated.

More modalities can be developed, such as mixed mode

which one core work in de-stress mode and the other cores

work in fault tolerance mode. Furthermore, some spare module

with particular technologies, such as DICE-LEAP design,

adaptive voltage scaling can be deployed in the platform.

Fig. 3 The conception of the cross-layer fault-tolerance

framework

Breaking the abstraction layers divisions will lead to the

possibility of building a cross-layer fault tolerance framework,

which can comprehensively introduce the above or other

techniques corresponding to different layers. Each technique

can be modularized, so it is feasible to operate these modules

separately and dynamically. This could include activation and

inactivation of the module (in hardware or software) at the

various levels during the runtime. The integrated platform can

automatically explore the different modules combination

across multiple layers, in order to achieve the different

constraints or targets during operation.

VI. CONCLUSIONS

In the previous sections, we have presented the basic

concepts of simple and cross-layered fault tolerance

approaches, as well as a baseline adaptive multiprocessing

platform. Our short-term plans to verify the ideas presented in

the above section. In particular, we would like to characterize

and model different schemes of cross-layer fault tolerance, and

implement and evaluate it in the provided multiprocessor

platform.

ACKNOWLEDGMENT

This work has received funding from the European Union’s

Horizon 2020 research and innovation programme under the

Marie Skłodowska-Curie grant agreement No 722325.

REFERENCES
[1] Israel Koren, C. Mani Krishna, “Fault-Tolerant Systems”.

[2] S. Mitra et al., "The resilience wall: Cross-layer solution strategies,"
Proceedings of Technical Program - 2014 International Symposium on
VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu,
2014, pp. 1-11.

[3] N. Seifert et al., “On the radiation-induced soft error performance of
hardened sequential elements in advanced bulk CMOS technologies”, in
IEEE International Reliability Physics Symposium (IRPS), 2010, pp.
188–197.

[4] N. N. Mahatme, N. J. Gaspard, S. Jagannathan, T. D. Loveless, B. L.
Bhuva, W. H. Robinson, L. W. Massengill, S. J. Wen and R. Wong,
"Impact of Supply Voltage and Frequency on the Soft Error Rate of
Logic Circuits," IEEE Transactions on Nuclear Science, vol. 60, no. 6,
pp. 4200- 4206, Dec 2013.

[5] Linder, B.P., et al. , "Improving and Optimizing Reliability in Future
Technologies with High-K Dielectrics, " Proc. Symp. VLSI Technology,
Systems, and Applications (VLSI-TSA) , pp. I-4, 20 1 3.

[6] Ramey, et al. , "Intrinsic Transistor Reliability Improvements from
22nm Tri-Gate Technology," Proc. inti. Reliability Physics Symp. , pp.
4C.5. 1 -4C. 5. 5, 20 1 3.

[7] Joshi, R., et al. , "Variability Analysis for Sub - 1 00nm PD/ SOI SRAM
Cell," Proc. European Solid State Circuit Con!, pp.2 1 1 -2 1 4, 2004.

[8] Tschanz, J. w., et al. , "Tunable Replica Circuits and Adaptive Voltage-
Frequency T echniques for Dynamic Voltage, Temperature, and Aging
Variation Tolerance," Proc. Symp. VLSI Circuits, pp. 1 1 2-1 1 3, 2009.

[9] Vassighi, A., et al. , "Characterizing Infant Mortality in High Volume
Manufacturing," Proc. Inti. Reliability Physic Symp. , pp. 7 1 7-7 1 8,
2008.

[10] E. Cheng et al., "Tolerating Soft Errors in Processor Cores Using
CLEAR (Cross-Layer Exploration for Architecting Resilience)," in
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems.

[11] D. J. Lu, "Watchdog Processors and Structural Integrity Checking,"
IEEE Transactions on Computers, Vols. C-31, no. 7, pp. 681-685, July
1982.

[12] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa, K. Morita, T.
Muta, T. Motokurumada, S. Okada, H. Yamashita, Y. Satsukawa, A.
Konmoto, R. Yamashita and H. Sugiyama, "A 1.3 GHz fifth generation
SPARC64 microprocessor," in Solid-State Circuits Conference, 2003.
Digest of Technical Papers. ISSCC. 2003 IEEE International, 2003.

[13] M. Ebbers, J. Kettner, W. O’Brien, B. Ogden, „Introduction to the New
Mainfame z/OS Basics“

[14] J. F. Tarrillo, C. A. Lisboa, L. Carro, C. Argyrides and D. K. Pradhan,
"Evaluation of a new low cost software level fault tolerance technique to
cope with soft errors," 2010 11th Latin American Test Workshop, Pule
del Este, 2010, pp. 1-3.

[15] V. P. Nelson, "Fault-tolerant computing: fundamental concepts," in
Computer, vol. 23, no. 7, pp. 19-25, July 1990.

[16] L. Hsiao-Heng Kelin et al., "LEAP: Layout Design through Error-Aware
Transistor Positioning for soft error resilient sequential cell design,"
2010 IEEE International Reliability Physics Symposium, Anaheim, CA,
2010, pp. 203-212.

[17] S. S. Sahoo, B. Veeravalli and A. Kumar, "Cross-layer fault-tolerant
design of real-time systems," 2016 IEEE International Symposium on

Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), Storrs, CT, 2016, pp. 63-68.

[18] T. M. Austin, "DIVA: a reliable substrate for deep submicron
microarchitecture design," MICRO-32. Proceedings of the 32nd Annual
ACM/IEEE International Symposium on Microarchitecture, Haifa,
1999, pp. 196-207.

[19] Huang, K.-H. and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Trans. Computers, 1984.

[20] J. Liu and G. Agrawal, "Algorithm Level Fault Tolerance for Molecular
Dynamic Applications," 2015 IEEE 22nd International Conference on
High Performance Computing (HiPC), Bangalore, 2015, pp. 406 415.

[21] F. Oboril and M. B. Tahoori, "Cross-layer approaches for an aging-
aware design of nanoscale microprocessors: Dissertation summary:
IEEE TTTC E.J. McCluskey doctoral thesis award competition finalist,"
2015 IEEE International Test Conference (ITC), Anaheim, CA, 2015,
pp. 1-10.

[22] A. Simevski, "Architectural framework for dynamically adaptable
multiprocessors regarding aging, fault tolerance, performance and power
consumption", 2014

[23] M. Schölzel, "Self-Testing and Self-Repairing Embedded Processors:
Techniques for Statically Scheduled Superscalar Architectures ", 2014

[24] G. Tsiligiannis et al., "An SRAM Based Monitor for Mixed-Field
Radiation Environments," in IEEE Transactions on Nuclear Science,
vol. 61, no. 4, pp. 1663-1670, Aug. 2014.

[25] [25] N. Wattanapongsakorn and S. P. Levitan, "Reliability optimization
models for embedded systems with multiple applications," in IEEE
Transactions on Reliability, vol. 53, no. 3, pp. 406-416, Sept. 2004.

[26] S. R. Nassif, N. Mehta and Y. Cao, "A resilience roadmap," 2010
Design, Automation & Test in Europe Conference & Exhibition (DATE
2010), Dresden, 2010, pp. 1011-1016.

[27] https://www.ihp-microelectronics.com/

[28] R. Ramanathan. Intel multi-core processors: Making the move to quad-
core and beyond. Technology@Intel Magazine, Dec 2006.

[29] A. Savino, A. Vallero and S. Di Carlo, "ReDO: Cross-Layer Multi-
Objective Design-Exploration Framework for Efficient Soft Error
Resilient Systems," in IEEE Transactions on Computers.

https://www.ihp-microelectronics.com/

