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Abstract—In this work, we study a novel mobility prediction
algorithm based on past long-term and short-term trajectories
of users. In particular, we perceive the regularity of users’
movements by training a Markov Renewal Process (MRP) using
the long-term trajectory history. Moreover, short-term trajectory
data, recorded within the current residing cell, is utilized to
incorporate possible randomness of users’ behavior into the
algorithm. In fact, each neighboring cell is assigned two distinct
probabilities of being chosen as next crossing cell, one given by
MRP, while another is obtained from the direction of movements
across the current cell. Lastly, assigned probabilities, i.e. the
pieces of information extracted from the two aforementioned
trajectory data sets, are combined with the aid of Dempster-
Shafer theory to reach the best possible decision about the future
crossing cell. Simulation results illustrate that the algorithm
reliably predicts the next crossing cell with around 70% accuracy.

Index Terms—Mobility prediction, Markov renewal process,
Dempster-Shafer Theory, Bayesian Inference, user trajectory

I. INTRODUCTION

Maintaining Quality of Service (QoS) is a challenge in

current mobile communication networks, and so will be in the

next generation of mobile systems (5G). One of the approaches

adopted in literature to meet this challenge is to provide or

reserve the amount of required resources before the arrival

of the user to the cell [1]. To this end, knowing the future

crossing cell of users appears to be essential.

In cellular systems, Mobility Prediction (MP) enables us to

predict future crossing cell of users and to allocate required

resources to the cell in advance, thereby reducing the number

of failed handovers, alleviating unsuccessful call-attempts in

the network [2], and increasing the total throughput of the

network [3].

The Markov model in [4] is deployed to perceive the

users’ habitual movements and thereby predicting their future

movements. In [5], a Markov Renewal Process (MRP) has

been employed to predict the future crossing cell and, corre-

spondingly, to reserve the required resources for the users prior

to their arrival. Hidden Markov Model (HMM) is applied in

[6], [7] to utilize prior knowledge such as movement history

for learning and inference. Machine and Deep Learning tech-

niques investigated in [8]–[12] are other approaches adopted

in literature to predict users’ next crossing cell. In [13] the

locations of the user in the current cell are recorded and

exploited to predict the future crossing cell. Moreover, user

tracking with the aid of Kalman filtering along with user

mobility pattern form hierarchical mobility prediction in [14].

In [15], [16], the application of Dempster-Shafer (DS) theory

in tracking and prediction has been discussed and its potential

functionality has been indicated. DS theory has been combined

with a Markov model in [17] to predict users’ destinations and

transitions to road segments. All the aforementioned works

have made valuable contributions towards MP, however, they

either solely rely on long-term history of movements [4]–[12]

or short-term data history [13], [15]. In particular, neglecting

short-time data (which contains information about randomness

of movements) while predicting based only on long-term

history of movements (or vice versa) can in principle lead

to poor performance of prediction algorithm. Furthermore,

whereas the continuous tracking [14] of users may result in

better predictions, such a scheme will likely suffer from the

large overhead due to constant monitoring.

From the mobility point of view, the users’ behavior in

their daily life can generally be divided into regular and

random behavior. For example, the path between home and

office can be regarded as an example of regularity in behavior

whereas exploring new areas of the city can be viewed as

randomness in users’ movements. In particular, it appears

that gathering information about regularity and randomness

of users’ behavior and subsequently combining them with

each other is a technically reasonable approach and likely to

lead to an accurate next-cell prediction. To the best of our

knowledge, such an approach has not been yet adopted in the

literature. Given these explanations, the manner of gathering

the pieces of information about regularity and randomness of

users’ movements, and the method of combining them are

introduced as the challenges we meet in this paper.

In this work, we draw on the MRP [5] to capture the

regularity in the behavior of the users. A MRP is a semi-

Markov process wherein the next-state transition probabilities

are governed by a Markov process and the sojourn time in any

state is dependent on the current and next state. Furthermore,

as done in [13], we record the instantaneous position of each

user within its current residing cell and suggest a mathematical

expression to extract information about randomness of its

movements from the recorded raw data. In essence, MRP

represents the information about regularity while instantaneous

positions contain information about randomness of users’

movements. Additionally, to combine the pieces of evidence

collected from independent sources of information, among

all the existing combiners [18] and classifiers [19]–[21], we
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choose DS theory [22], which has also been employed in [15]

to infer future candidate locations.

The contributions of this paper are summarized as follows:

• We introduce and briefly discuss the DS theory, MRP and

their employment in combining the obtained pieces of in-

formation and perceiving regularity in users’ movements,

respectively.

• We propose a novel mathematical expression to capture

the randomness in users’ behavior based on the direction

of movement in the current residing cell.

• We propose an algorithm to predict the future crossing

cell of a user by combining MRP and the instantaneous

direction of movement and study its performance in terms

of prediction accuracy.

The rest of the paper is structured as follows: In Section II,

we give an introduction to DS theory and explain the MRP

as well as their functionality in this work. In Section III,

we discuss the perception of randomness in users’ behavior.

Section IV summarizes the previous sections by introducing

a prediction algorithm. In Section V, simulation results are

presented and discussed. Finally, Section VI concludes this

work and indicates the future works.

Notation:

We use ∅ to denote an empty set. ⊕ and ∧ represent the

combination of evidence pieces in DS Theory and logical and,

respectively. [x]+ returns 0 when x < 0 and returns x if x ≥ 0.

II. BACKGROUND

To develop the prediction algorithm based on the idea

mentioned in previous section, we firstly provide an overview

of DS theory and MRP. The former combines the pieces of

information obtained from several sources while the latter

serves as a source whose information is employed by the

former.

A. Dempster-Shafer Theory

A correct and reliable decision about the next crossing

cell demands utilization of all the information collected from

two sources of evidence, namely long-term data history and

current-cell location history. To this end, among all combina-

tion theories, DS theory proposes a rule of combination which

recently has aroused enormous interest despite its complexity

[23], [24]. DS theory involves gathering a number of pieces of

uncertain information, which are presumed to be independent.

Each piece of information is represented by a mass function.

Later, all the mass functions are combined to reach the final

decision about the future crossing cell [22]. In special cases,

as proved in [16], DS theory can be considered equivalent

to Bayesian theory of inference. In the following, we briefly

give an overview of DS theory and its application to mobility

prediction.

1) Mass Function: DS theory begins with assuming a

Universe of Discourse Θ, which is a set of mutually exclusive

propositions about a domain. We let 2Θ be the set of all subsets

of Θ.
A mass function m : 2Θ → [0, 1], also known as basic

probability assignment (bpa), is defined with the following

conditions:

m(∅) = 0,
∑

Ai⊆Θ

m(Ai) = 1, (1)

where Ai is a subset of Θ. It is worth mentioning that a mass

function assigns numbers directly to the pieces of evidence

(subsets of Θ), while traditional probability theory assigns

numbers to the elements of Θ [15]. Let us consider a set

of possible future cells Θ = {C1, C2, C3}. A mass function

would assign numbers to the elements of the set of subsets

2Θ = {∅, {C1}, {C2}, {C3}, {C1, C2}, {C1, C3}, {C2, C3},
{C1, C2, C3}}, whereas traditional probability theory would

assign numbers to individual elements {C1}, {C2} and {C3},
i.e. elements of Θ. In the case where we have evidence only

about the individual elements of Θ (singletons), the mass

function is equivalent to traditional probability theory [25].
2) Evidence Combination: Suppose mH and mL are two

mass functions of the same set Θ from two distinct and

independent sources of evidence, namely H and L. The rule

of combination which combines bpas is given by [15]

mH ⊕mL(C) =

∑
X∩Y=C

mH(X)mL(Y )

1− ∑
X∩Y=∅

mH(X)mL(Y )
, ∀ C �= ∅, (2)

where X and Y are two subsets of Θ, i.e. elements of set

of the subsets 2Θ, C denotes a potential hypothesis and the

denominator is a normalization factor to keep the value of

mH ⊕mL(C) in [0, 1].
It has been proved in [16] that DS theory is equivalent

to Bayesian theory when we assign numbers only to the

singletons of set 2Θ, i.e. the mass functions are Bayesian.

Consequently the DS rule of combination in (2) turns into a

Bayesian rule of inference, given by [16]

Pr(Ci|H ∧ L) =
Pr(H ∧ L|Ci)Pr(Ci)

Pr(H ∧ L)
, (3)

where Ci denotes the future possible cell, i ∈ {1, 2, · · · , 6}.

Assuming independence of the sources, i.e. knowing that H
provides no extra information about L or vice versa,

Pr(H ∧ L|Ci) = Pr(H|Ci)Pr(L|Ci)Pr(Ci),

P r(H ∧ L) =
N∑
i=1

Pr(H|Ci)Pr(L|Ci)Pr(Ci).
(4)

With the help of (4), we can rewrite (3) as

Pr(Ci|H ∧ L) =
Pr(H|Ci)Pr(L|Ci)Pr(Ci)∑N
i=1 Pr(H|Ci)Pr(L|Ci)Pr(Ci)

. (5)

After reformulation using Bayes’ theorem

Pr(Ci|H ∧ L) =
Pr(Ci|H)Pr(Ci|L)∑N
i=1 Pr(Ci|H)Pr(Ci|L)

. (6)



Fig. 1. Markov model for each cell in cellular network.

Thus the problem of predicting the future crossing cell is

equivalent to

arg max
i

Pr(Ci|H ∧ L). (7)

In particular, as it is pointed out in upcoming sections,

assigning numbers to singletons based on short- and long-term

history of users’ movements allows us to use (7) to infer the

future crossing cell.

B. Markov Renewal Process (MRP)

History-based prediction methods with the aid of Markov

models have been addressed in literature [5], [6], [26]. In

this work, as done in [5], we employ the MRP to obtain

the probability of each neighboring cell being chosen as the

next crossing cell from the long-term data history. MRP is a

generalization of a renewal process in which the time between

renewals are selected according to a Markov chain [27]. As

depicted in Figure 1, each cell is modeled as a state in the

Markov model and the transition probabilities in the Markov

model denote the probability that the user transitions to each

neighboring cell. Note that we construct a 7-state Markov

chain for each cell (Figure 1) which is then utilized to construct

MRP as is explained below.

The semi-Markov kernel for a time-homogeneous process

is given by [5]

Qj,i(t) = Pr{Sn+1 = i, Tn+1 − Tn ≤ t|Sn = j}, (8)

where Sn and Sn+1 represent the state of the system after the

n-th and (n+1)-th transitions, respectively, with Tn and Tn+1

being the times at which the n-th and (n + 1)-th transitions

occur, respectively. Qj,i(t) denotes the probability that, after

transitioning into state j, the process transitions into state i
within t units of time. We then rewrite (8) as

Qj,i(t) = Pj,iGj,i(t), (9)

where

Gj,i(t) = Pr{Tn+1 − Tn ≤ t|Sn+1 = i, Sn = j}. (10)

Gj,i(t) represents the conditional probability that a transition

will take place within t amount of time, given that the process

has just entered state j and will subsequently make a transition

to state i. Pj,i denotes the transition probability from state j

to state i, and is obtained by training the Markov model of

each cell.

An exponential distribution can typically be assumed to

represent Gj,i(t) [28]. Such distribution is defined with the

parameter λj,i considered to be the rate of transition from j
to i. Hence Gj,i(t) is given by [29]

Gj,i(t) = 1− exp(−λj,it). (11)

λj,i is chosen such that (11) fits the used data set. By

combining (9) and (11), the time variant transition probability

for each neighboring cell is obtained as follows:

Qj,i(t) = Pj,i ·
[
1− exp(−λj,it)

]
, (12)

with t ∈ [0, Tn+1 − Tn].

III. CURRENT-CELL LOCATION HISTORY

To take the best possible decision about the next crossing

cell of a user, one cannot only rely on the long-term history of

movements. In particular, although every user exhibits some

regularity in its movements, e.g. going everyday to work or

university, there is still a degree of randomness in users’

movements due to traffic condition, construction barriers, or

exploring new areas. Therefore, it is necessary to access

other sources of information to be able to incorporate the

randomness of movements into the prediction algorithm.

A. Location-aware Next-cell Probability

Users’ short-term location history across the current cell

contains valuable information about possible randomness in

their behavior. Specifically, based on the past trajectory of

a user in the current cell, we assign probabilities to each

neighboring cell being the next crossing cell. We define the

current-cell location history as vector LN = [l1, l2, · · · , lN ],
whose elements are the locations that a user has crossed within

the current cell. Clearly, the number of elements, N, depends

on frequency of recording the user’s location. Furthermore,

we assume that this information is provided by network, e.g.

using different localization methods such as range-based and

angle-based [30], [31].1 Note that vector LN denotes the past

locations of the user in the current cell, whereas the long-

term trajectory history that we utilize to train the MRP are

sequences of cells crossed by the user in long periods of time,

e.g. weeks or months. Knowing the vector LN , the following

probability can be calculated,

Pr(Ci|LN ). (13)

Generally, we expect that each user’s movements tend to

head for its final destination. Therefore, monitoring the users’

direction of movement within the current cell enables us to

perceive their overall direction. As shown in Figure 2, a change

of direction can be perceived by calculating the variation of

user’s angle to the vertexes of the cell. In particular, with each

movement, θi will change and, as the user moves towards one

1Owing to multiple location-based services [32], it is expected that user
localization will play a significant role in 5G networks and be embedded
therein [33].
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of the neighboring cells, the corresponding angle θi grows. θi
can be readily calculated at each point of the cell using cell

geometry [14].

Knowing the variation of θi, the next step is to assign an

instantaneous probability to each neighboring cell. In partic-

ular, with each movement, depending on the change of angle

θi, we assign a probability to each of the neighboring cell

being chosen as next crossing cell. The assigned probability

is as follows:

Pr
[i,n]
inst.(Ci|ln) =

⎧⎨
⎩

βi(n)
∑6

i=1[βi(n)]
+ βi(n) > 0,

0 βi(n) ≤ 0.
(14)

where

βi(n) = θi(n)− θi(n− 1). (15)

In fact, we assign positive probabilities according to (14) to

the cells towards which the user is moving and assign zero

probabilities to the cells from which the user gets away. In

other words, using (14), we assert that the user approaches

a cell (or group of cells) and simultaneously retreats from a

number of cells.

We further follow the approach introduced in [13] and define

a virtual circle wherein the Base Station (BS) records the

movements and assigns the instantaneous probability to each

movement. Eventually, the prediction is made as the user

crosses the border of the virtual circle (case 1, Figure 3).

Furthermore, the prediction of the next cell in case 2 where the

user enters the cell and leaves it without crossing the virtual

circle is only based on MRP. In fact, as soon as the user enters

a new cell, we assign a temporary prediction based on MRP

and, as he moves across the cell inside the circle, we record the

trajectories and make a new prediction based on both MRP and

instantaneous probabilities at the border of the circle, where

the user is likely to leave the circle (and subsequently the

cell). The circle radius can be readily determined based, e.g.

on Received Signal Strength (RSS).

B. Exponential Moving Average (EMA)

To determine the probability of each cell being the future

crossing cell, we need to consider the movement of the user

throughout the current cell. In particular, it is expected that the

Case 1

Case 2

Fig. 3. Graphical example of the movements of a user within a cell.
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Fig. 4. Block diagram of prediction algorithm.

movements of the user are directed to his intended future cell.

Therefore, averaging over instantaneous probabilities would

be the first idea to take such overall behavior into account.

However, user’s intended future cell becomes more evident as

the user approaches the border of the current cell. In other

words, the final movements appear to play a decisive role

in next-cell prediction. Given that, instead of using a simple

equal weight moving average, we employ the Exponential
Moving Average (EMA), where the probabilities corresponding

to recent movements are assigned larger weights [34]. Thus

(13) can be written as

Pr(Ci|LN ) = EMAn(Pr
[i,n]
inst.(Ci|ln)), (16)

where the operator EMAn(·) applies exponential moving av-

erage over index n.

IV. PREDICTION ALGORITHM

Given the previous sections, we now introduce our predic-

tion scheme depicted in Figure 4. Furthermore, we develop

Algorithm 1 which begins in step 1 with training the Markov

model using the sequences of user crossed cells obtained

from long-term history of movements, thereby calculating

Pj,i. Moreover, having the sojourn time of the user at each

cell before transitioning into a neighboring cell, we fit them

into the exponential distribution for each neighboring cell

and obtain λj,i, correspondingly Gj,i(t). Finally, Qj,i(t) is

calculated using (12). In step 2, as mentioned in Section III-A,



a temporary prediction based solely on MRP, i.e. Qj,i(t), is

assigned to the user as it enters the cell j (first we assume

case 2, Figure 3). This is conducted as follows:

arg max
i

Qj,i(t = 0) for j = current-cell index. (17)

Later on, in step 4, if the user enters the circle, i.e. the

condition in step 3 is satisfied, the instantaneous probabilities

are calculated based on its recorded locations within the virtual

circle (step 5) and averaged (step 7). In step 8, the new

probabilities assigned to neighboring cells based on MRP are

obtained and combined in step 9 with the probabilities from

step 7. Finally in step 10 the next crossing cell is predicted.

As an example, we assume user U0 has entered the virtual

circle of cell J0 and arrives at the border of the circle at

time T0 after being localized N0 times. Using (6) and (7)

the predicted next cell for this user is obtained as follows:

CNext = arg max
i

QJ0,i(t = T0)P (Ci|LN0)∑6
i=1 QJ0,i(t = T0)P (Ci|LN0)

Algorithm 1 Prediction Algorithm

1: Train the MRP using long-term data history.

2: Make primary prediction based on MRP in (9).

3: if User crosses the border of the circle then
4: Record the locations of user inside the circle.

5: Assign instantaneous probabilities with each record

using (14).

6: if User is at the border of the circle then
7: Obtain the exponential average of probabilities ob-

tained in step 5 using (16).

8: Obtain the probability of each cell being next cross-

ing cell using MRP in (12).

9: Combine the probabilities from step 7 and step 8

using (6).

10: Predict the next crossing cell using (7).

11: end if
12: return Predicted cell (outcome of step 10)

13: end if

V. RESULTS AND DISCUSSIONS

To evaluate the performance of our proposed algorithm in

terms of prediction accuracy we use the collected data from

[35]. The data set includes the trajectory of 4 users, each of

them at a different site. We only use the data from the city

of New York (39 days) and the university campus KAIST (92

days) since they show both random and regular behavior. The

trajectories of the users have been recorded each 30 seconds in

XY Cartesian coordinates. Moreover, we divide the XY-plane

into several cell clusters and map the trajectories of the data

set onto it to obtain the cell sequences for training the MRP.

Furthermore, 60% of the available data is used to train MRP

and the rest to evaluate the proposed algorithm. Finally, as a

benchmark, we consider the prediction model based solely on

Markov model.
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Fig. 6. Prediction accuracy for Algorithm 1 and Markov model in two sites,
namely New York city and KAIST university campus.

Figure 5 indicates the convergence of transition probabilities

to the neighboring cells. As can be observed, in accordance

with (11), Qj,i(t) converges to Pj,i as the sojourn time grows.

In other words, as we expect,

lim
t→∞Qj,i(t) = Pj,i. (18)

Specifically, in the course of prediction, as the user arrives

at the border of the virtual circle, Qj,i(t) is calculated based

on the sojourn time of the user in the current cell up to the

moment of prediction. Later on, it is combined with (13) by

the combination rule in (6) to make a prediction about the

future crossing cell. In fact, the instant in which the prediction

is made, can have significant impact on the outcome of the

prediction as Qj,i(t) is time-variant.



Figure 6 shows the prediction accuracy versus the ratio

of virtual circle radius to cell radius for Algorithm 1 and

Markov model (MM). The prediction accuracy is averaged

over different cell sizes varying from 500 meters to 1200 (with

the step size of 10 meters). As can be seen, for Algorithm 1,

the prediction accuracy increases as the virtual circle radius

grows, whereas the MM indicates constant behavior. Indeed,

as the circle’s radius grows, the number of recorded locations

increases and we can include the last movements of the user

into the prediction algorithm. Thus we are able to overcome

the random behavior that might happen in the last moments of

the user’s residence in the current cell. It is worth mentioning

that the gap between Algorithm 1 and MM for KAIST campus

is less than that of New York city. Particularly, owing to

the bigger data set for KAIST campus, namely 92 days of

user’s trajectory, the Markov model achieves higher prediction

accuracy. Note that the size of the data set for New York city

is only 39 days.

VI. CONCLUSION AND FUTURE WORKS

In this work, we proposed a new mobility prediction al-

gorithm employing long- and short-term history of users’

movements. In particular, we perceived the regularity in

users’ movements with the aid of Markov renewal process

while the randomness of their behavior was captured by

utilizing the recorded locations in their current residing cell.

The latter was further incorporated into the algorithm by

assigning probabilities to each neighboring cell based on the

direction of movement. Furthermore, Dempster-Shafer theory

was employed to combine above pieces of evidence, thereby

predicting the next crossing cell of the users. Simulation results

indicate that the prediction can be made with high accuracy

and reliability using the proposed algorithm.

In future works, we will investigate the impact of differ-

ent combining and inference methods currently employed in

reasoning and decision making theory. In addition, we will

include more pieces of evidence into the prediction algorithm.

In particular, utilizing more pieces of information and deploy-

ing sophisticated inference methods, which take more aspects

of the collected data into considerations (e.g. dependence

between sources of information or reliability of the sources),

we expect to enhance the accuracy of the prediction. However,

in this case, complexity is going to be the challenge to be

overcome. Furthermore, in the course of conducting this work,

we observed that there is a range of cell sizes where our

proposed algorithm operates significantly better (i.e. more

than 85% accuracy), therefore considering the optimal ratio

of location recording frequency to cell radius is another aim

to be pursued in future works.
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