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Abstract—In this work, we study the joint synchronization
and localization (sync&loc) of Mobile Nodes (MNs) in ultra
dense networks. In particular, we deploy an asymmetric time-
stamp exchange mechanism between MNs and Access Nodes
(ANs), that, traditionally, provides us with information about
the MNs’ clock offset and skew. However, information about
the distance between an AN and a MN is also intrinsic to the
propagation delay experienced by exchanged time-stamps. In
addition, we utilize Angle of Arrival (AoA) estimation to de-
termine the incoming direction of time-stamp exchange packets,
which gives further information about the MNs’ location. Finally,
we employ Bayesian Recursive Filtering (BRF) to combine the
aforementioned pieces of information and jointly estimate the
position and clock parameters of MNs. The simulation results
indicate that the Root Mean Square Errors (RMSEs) of position
and clock offset estimation are kept below 1 meter and 1 ns,
respectively.

Index Terms—5G, Joint Synchronization and Localization,
Bayesian Recursive Filtering, Time-stamp exchange

I. INTRODUCTION

The fifth generation (5G) of mobile communication net-
works is expected to provide an enormous variety of
localization-based services [1]–[3]. User tracking [4], next
crossing cell prediction [5], and location-assisted beamforming
[6] can be considered as examples where Mobile Node (MN)
localization plays a decisive role. State-of-the-art MN local-
ization techniques rely primarily on the cooperation among
Access Nodes (ANs), requiring them to be precisely syn-
chronized. In addition, for many of the existing techniques
to function, the clock parameters of the MNs need to be
known (or to be continuously tracked). Therefore, it appears
that the three aforementioned problems, namely inter-AN
synchronization, MN localization, and MN’s clock parameter
estimation are closely intertwined and need to be addressed
jointly.

In [7], [8], we have thoroughly addressed the end-to-end
synchronization in 5G networks. In particular, we employed
Belief Propagation (BP) and Bayesian Recursive Filtering
(BRF) not only to achieve high-precision end-to-end synchro-
nization, but also to keep the inter-AN relative clock offset
and skew low. In other words, the algorithms therein pave the
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way for the joint synchronization and localization (sync&loc)
of MNs by accurately synchronizing the neighboring ANs.

The joint MN sync&loc problem has been extensively
considered in literature. In [9], the authors rely on symmetric
time-stamp exchange between ANs and MNs to jointly and
distributedly estimate MNs’ location and clock offset with
the aid of BP. Furthermore, the authors of [10], [11] adopt
a similar approach using an asymmetric time-stamp exchange
mechanism proposed in [12], enabling them to track both the
clock offset and skew. While support of time-stamp exchange
in 5G networks is a valid assumption to make (as it has
been already introduced in several standards, e.g. IEEE 802.11
under the name fine time measurement [13]), the high number
of message-passings required by BP renders the approach
limited in practice. Additionally, they provide the estimation
of the sync&loc parameters at MN, whereas for the location-
based services to be delivered, these parameters need to be
computed on the network side.

In [14], the authors leverage Extended Kalman Filtering
(EKF) to obtain the estimation of clock parameters and
position in ultra dense networks. In particular, they assume
synchronized ANs and perform MN joint sync&loc in the
presence of uncertainty about Time of Arrival (ToA) and
Angle of Arrival (AoA) parameters. The level of uncertainty
is then determined based on the derived Cramer Rao Bound
(CRB). However, in practice, the estimation accuracy of AoA
and ToA plays a significant role in the performance of joint
sync&loc. Thus, a more detailed and in-depth analysis is
required to recognize the limitations they impose on joint
sync&loc algorithms. Specifically, in this work, we focus on
the limitations caused by uncertainty in time-stamping (which
directly translates to uncertainty in ToA) while drawing on
the CRB for AoA estimation and leave its detailed analysis
for future works.

The contribution of this paper is summarized as follows:
• We present a realistic system model for joint sync&loc

based on asymmetric time-stamp exchange.
• We propose a BRF-based joint sync&loc algorithm using

time-stamp exchange between ANs and MNs.
• We analyze the performance of the proposed approach

with the aid of detailed simulations in a challenging real
world scenario.

The rest of this paper is structured as follows: In Section II, we
introduce our system model. Section III describes the details
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Fig. 1. An example where MN joint sync&loc can be carried out.

TABLE I
NOTATION

Denotation Description
G matrices
a vectors
a (=) =-th element of vector a
O# # × # dimensional identity matrix
0# # × # dimensional all-zero matrix
N(x |-, �) Gaussian distributed random vector x with mean

vector - and covariance matrix �
diag(G1, · · · , G ) diagonal matrix with the diagonal elements given

by (G1, · · · , G )
∼ stands for “is distributed as”
∝ linear scalar relationship between two real valued

functions

of the BRF algorithm for joint estimation of location and clock
parameters. Furthermore, simulation results are presented and
discussed in Section IV. Finally, Section V concludes this work
and indicates potential future work.

II. SYSTEM MODEL

We consider a scenario where a MN, e.g. a moving
car/person, is served by a set of ANs, all backhauled by a Base
Station (BS), as shown in Figure 1. We assume that the ANs
continuously synchronize themselves with the backhauling BS
using the methods described in [7], [8]. The joint sync&loc
is then performed for the scenario where the MN exchanges
time-stamps through an active Line-of-Sight (LoS) connection
with only one AN. However, if there are further ANs in LoS
to the MN, they can passively cooperate with the main AN to
further enhance the performance. Moreover, an estimation of
AoA is carried out upon each round of time-stamp exchange.
In the following subsections, we firstly present the clock model
for ANs and MNs. Then, we explain the time-stamp exchange
mechanism as well as the concept of active/passive connection
between ANs and MNs. Lastly, we deal with the CRB of AoA
estimation.

A. Clock Model

We consider the following clock model for each node 8.

28 (C) = W8C + \8 , (1)

Time-Stamping

node j

node i
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Fig. 2. Delay decomposition.
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Fig. 3. Time-stamp exchange between MN 8 and AN 9. Blue/red solid/dashed
lines indicate the active/passive listening of AN 9/;.

where C represents the reference time. Furthermore, W8 and \8
denote the clock skew and offset, respectively. The parameter
W8 is generally random and varies over time. However, it is
common to assume that it remains constant in the course of
one synchronization period [15]–[17]. Given that, the goal of
time synchronization can be defined as the estimation of W8
and \8 (or transformations thereof) for each node.

B. Offset Decomposition and Time-stamp Exchange

1) Offset decomposition: To elaborate on the components
making up the offset \8 , we break down this parameter as
shown in Figure 2. The parameter C 9 /C8 is the time taken for
a packet to leave the transmitter after being time-stamped,
3 98/38 9 denotes the propagation delay, and A8/A 9 represents the
time that a packet needs to reach the time-stamping point upon
arrival at the receiver. In general, C 9 + 3 98 + A8 ≠ C8 + 38 9 + A 9 ,
indicating that the packets sent from node 9 to node 8 do
not necessarily experience the same delay as those sent from
node 8 to node 9 . Furthermore, we define )8 9 = C 9 + A8 , and
'8 9 = C8 + A 9 . Generally, )8 9 and '8 9 (and correspondingly C 9 ,
C8 , A 9 , and A8 ,) are random variables due to several hardware-
related random independent processes and can, therefore, be
assumed i.i.d. Gaussian random variables, whereas 3 98 and 38 9
are usually assumed to be deterministic and symmetric (3 98 =

38 9 ) [4], [16]. The random variables )8 9 and '8 9 are assumed to
be distributed as N(`) , f2) ) and N(`', f2'), respectively. As
mentioned in [15], [16], [18], while it is typical to assume that
`) = `', and parameters f) and f' are known, having any
information about the value of `) and `' is highly unlikely.
Therefore, we construct the joint sync&loc algorithm assuming
no knowledge on `) and `' except for `) = `' .

2) Time-stamp exchange scheduling: We deploy the asym-
metric time-stamp exchange mechanism shown in Figure 3,



proposed in [12] and employed in [10], [15]. The AN 9

propagates a message announcing the beginning of a time-
stamp exchange round. Upon reception, the connected MNs
go to active listening mode while the neighboring ANs go into
passive listening mode. In the former, the MNs will respond
after reception of two messages from AN 9 (depicted in Figure
3), whereas, in the latter, the ANs only listen to the packet
exchange between AN 9 and MNs. Without loss of generality
and for the sake of simplicity we write the equations for only
one MN and two ANs. The extension to multiple ANs/MNs
is straightforward.

3) Time-stamp exchange mechanism: Given Section II-B2,
and considering AN 9 as master node1, we can write

1
W̃8
(28 (C:2 ) − \̃8) = 2 9 (C

:
1 ) +

38 9

E2
+ ) :,0

8 9
, (2)

1
W̃8
(28 (C:4 ) − \̃8) = 2 9 (C

:
3 ) +

38 9

E2
+ ) :,1

8 9
, (3)

1
W̃8
(28 (C:5 ) − \̃8) = 2 9 (C

:
6 ) −

38 9

E2
− ':

8 9 , (4)

where C:1 /C:2 , C:3 /C:4 , and C:5 /C:6 are the time points where MN
8 and AN 9 send/receive the sync messages, respectively. Pa-
rameter 38 9 =

√
(G

8
− G 9 )2 + (H8 − H 9 )2 denotes the Euclidean

distance between nodes 8 and 9 and E2 is the speed of light.
Furthermore, if there is an AN ; in passive listening mode, we
can write

1
W̃8
(28 (C:5 ) − \̃8) = 2; (C

:
7 ) + \ 9; −

38;

E2
− ':

8; , (5)

where C:7 is the time point when AN ; receives the time-stamps
sent by MN 8. Parameter \ 9; denotes the relative offset between
ANs 9 and ; and is shown in [7] to have the distribution
N(\ 9; |0, f29;) with f9; ≈ 1 ns for an urban scenario similar to
Figure 1. Note that we neglect the impact of skew difference
between ; and 9 since it has been shown that this difference
is almost zero if the ANs frequently synchronize to the
backhauling BS using the algorithm introduced in [8].

At the :-th round of time-stamp exchange (and correspond-
ingly :-th round of joint sync&loc), the network localization
center is expected to have collected the time-stamps

c:8 9 =
[
2 9 (C:1 ), 28 (C

:
2 ), 2 9 (C

:
3 ), 28 (C

:
4 ), 28 (C

:
5 ), 2 9 (C

:
6 ), 2; (C

:
7 )

]
.

C. Angle of Arrival

AoA estimation has been extensively investigated in the
literature. In particular, beamforming, subspace, and maximum
likelihood methods can be employed to accurately estimate the
AoA [19]. Nevertheless, in this work, our focus is to reveal
the potential merit of time-stamp exchange in joint sync&loc.
Therefore, we assume that an uncertain estimation of AoA is

1In Figure 3, instead of a global time reference 2 (C) = C , we take node 9

as master node. It is straightforward to see that 1
W̃8
=
W 9
W8

, \̃8 = \8 − W̃8 \ 9 ,

3̃8 9 + )̃ :8 9 = W 9 (38 9 + ) :8 9 ) , and 3̃8 9 − '̃:
8 9
= W 9 (38 9 − ':

8 9
) . For the sake of

simplicity, as done in [4], we assume 3̃8 9 = 38 9 , '̃
:
8 9
= ':

8 9
, and )̃ :

8 9
= ) :

8 9
.

This is valid because W 9 ≈ 1 and the values of 38 9 + ) :8 9 and 38 9 − ':
8 9

are
low.

/08 /18 /28 /:8
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Fig. 4. Representation of Bayesian estimation.

available where the uncertainty, i.e. fi , is obtained from the
CRB.

Assuming that each AN has a #-element Uniform Linear
Array (ULA) antenna, the CRB on AoA estimation can then
be given by [20]

� (i)−1 =
(
# (# − 1) (# + 1)c2 sin2 (i)

24
× SNR

)−1
. (6)

We set the maximum value of SNR to 30 dB which occurs at
the closest MN-AN distance of 5m. It then drops according
to Friis path loss formula, i.e. 20 log10 (38 9 ). Furthermore, the
number of AN antennas, #, and distance between them are
set to 16 and _

2 , respectively, where _ denotes the wavelength.
Thus, at the :-th round of time-stamp exchange, each AN is
expected to have estimated i: , which, in this work, is derived
from the distribution N(i:? , f2i) with f2i = � (i)−1 and i:?
being calculated knowing the exact location of the MN 8 and
AN 9 .

III. CLOCK PARAMETERS AND POSITION ESTIMATION

Let /:8 be the state of the vector variable /8 ,[
1
W̃8

\̃8
W̃8

G8 H8 EG8 EH8

])
after the :-th round of time-

stamp exchange (visualized in Figure 4). Parameters G8/EG8
and H8/EH8 denote the position/velocity of node 8 on the G and
H axis, respectively. The probability distribution function (pdf)
corresponding to the :-th state can then be written as

?(/:8 |c1
::

8 9 , i
1:: ) =

∫
?(/08 , · · · , /:8 |c1

::
8 9 , i

1:: ) 3Θ:−1, (7)

where Θ:−1 =
[
/08 , · · · , /:−18

]
. Applying Bayesian rule, we

can rewrite (7) as

?(/:8 |c1
::
8 9 , i

1:: ) ∝∫
?(c1::8 9 , i

1:: |/08 , · · · , /:8 )?(/08 , · · · , /:8 ) 3Θ:−1. (8)

Knowing that the measurements are independent and assuming
Markov property [21], the integrands in (8) can be reformu-
lated as

?(c1::8 9 , i
1:: |/08 , · · · , /:8 ) = ?(c:8 9 , i: |/:8 ) · · · ?(c18 9 , i1 |/18 ),

?(/08 , · · · , /:8 ) = ?(/:8 |/:−18 ) · · · ?(/18 |/08 )?(/08 ), (9)



where ?(/08 ) denotes the prior knowledge on /8 . Plugging (9)
into (8) and carrying out mathematical simplifications as in
[7], [8], [21] leads to

?(/:8 |c1
::
8 9 , i

1:: ) ∝ ?(/:8 |c1
::−1

8 9 , i1::−1)?(c:8 9 , i: |/:8 ). (10)

The term ?(/:8 |c1::−18 9
, i1::−1) is referred to as prediction step

while the term ?(c:
8 9
, i: |/:8 ) is considered as correction step

[21]. In wireless networks, it is typical to assume that /:8 is
Gaussian distributed [4], [10], [15]. Given this assumption, if
the relation between all the states in Figure 4 is linear, we can
conclude that the marginal in (10) is also Gaussian distributed.
While that is the case for the prediction step, the measurement
equations (and consequently, the correction steps) are non-
linear, and therefore, need to be linearized. In the sequel, we
deal with the details of prediction and correction steps.

1) Prediction: Given the dynamics of MNs’ clocks and
movements, a reasonable prediction for /:8 is given by [10],

/:8 = A/:−18 + n:−1
8 , (11)

where

A =


I2 02 02
02 I2 ΔI2
02 02 I2

 .
Parameter Δ is the time difference between two consecutive
rounds of time-stamp exchange and n:−1

8
denotes the Gaussian

noise vector and assumed to have zero mean and covariance
matrix2 Q= = diag(f2W , f2\ , f2G , f2H , f2EG , f

2
EH
). Given (11), the

prediction term can be written as

?(/:8 |c1
::−1
8 9 , i1::−18 9 ) ∼ N (/:8 |-pred,�pred), (12)

where -pred = A-:−1
8

and �pred = A�:−1
8

A) +Q=.

2) Correction: We conduct the following mathematical
manipulations to obtain the correction term in (10). Subtracting
(2) from (3) leads to

1
W̃8
(28 (C:4 ) − 28 (C

:
2 )) = 2 9 (C

:
3 ) − 2 9 (C

:,0
1 ) + )

:,1
8 9
− ) :,0

8 9
, (13)

while summing up (3) and (4)

1
W̃8
(28 (C:4 ) + 28 (C

:
5 ) − 2\̃8) = 2 9 (C

:
3 ) + 2 9 (C

:
6 ) + )

:,1
8 9
− ':

8 9 .

(14)

Equation (4) stays as it is unless there are extra ANs coop-
erating with AN 9 by passively listening to the time-stamp
exchange. For example, for one extra AN cooperating with
AN 9 , subtracting (4) from (5) provides

38; − 38 9
E2

= 2; (C:7 ) − 2 9 (C
:
6 ) − \ 9; + '

:
8 9 − ':

8; . (15)

2In general, design of Q= is a difficult task. In particular, if it is too small,
the filter will be overconfident in its prediction model and will diverge from the
actual solution. In contrast, if it is too large, then it will be unduly dominated
by the noise in the measurements and perform sub-optimally. In this work,
we follow the design model discussed in [22], [23].

Finally, the AoA measurement can be expressed as follows:

arctan(
H8 − H 9
G8 − G 9

) = i:9 (16)

where i:
8

is calculated as explained in Section II-C. Again, if
there are more ANs involved in joint sync&loc, one can write
the same equation for their AoA measurements.

To permit (10) to have a closed-form solution, the relation
between parameters in the measurement equations (13), (14),
(4), and (16) must be linear. However, this is not the case as the
distance function is not linear. Therefore, we draw on Taylor
expansion to linearize the non-linear terms, thereby allowing
for a closed-form solution for (10). In particular, we write the
Taylor expansion around the point predicted by the prediction
step in (11). Thus

38 9

E2
≈ 0:9,0 + 0

:
9,G (G8 − G:8 ) + 0:9,H (H8 − H:8 ), (17)

arctan(
H8 − H 9
G8 − G 9

) ≈ 1:9,0 + 1
:
9,G (G8 − G:8 ) + 1:9,H (H8 − H:8 ), (18)

with 0:
9,0, 0

:
9,G
, 0:

9,H
, 1:

9,0, 1
:
9,G
, and 1:

9,H
, calculated as in

(19) and (20). Given (17) and (18), and computing the average
velocity using

EG8 =
G8 − G:−18

Δ
, EH8 =

H8 − H:−18

Δ
, (21)

we can write (13), (14), (4), and (16) for single-AN localiza-
tion in matrix form as

B8 9/8 = r8 9 + z8 9 , (22)

where z8 9 ∼ N(z|0,R8 9 ) with

R8 9 = diag(2f2)8 9 , f
2
)8 9
+ f2'8 9 , f

2
'8 9
, f2i , (

f:−1
G8

Δ
)2, (

f:−1
H8

Δ
)2),

B8 9 =



28 (C:4 ) − 28 (C
:
2 ) 0

28 (C:4 ) + 28 (C
:
5 ) −2

02 02

28 (C:5 ) −1
0 0

0:
9,G

0:
9,H

1:
9,G

1:
9,H

02

02 − 1
Δ

I2 I2


,

and r8 9 is constructed as in (23). The extension to two-AN
localization can be readily carried out by a) replacing (4) with
(15), b) writing an extra equation similar to (16) for AN ;,
c) changing the B8 9 , r8 9 , and R8 9 accordingly. Finally, the
correction term can be written as

?(c:8 9 , i:8 9 |/:8 ) ∼ N (-corr,�corr), (24)

where -corr = (B)
8 9

B8 9 )−1B)
8 9

r8 9 , and

�corr = (B)
8 9B8 9 )−1B)

8 9R8 9B8 9 (B)
8 9B8 9 )−) .



0:9,0 =
1
E2

(√
(G:

8
− G 9 )2 + (H:8 − H 9 )2

)
, 0:9,G =

G:
8
− G 9

E220
:
9,0
, 0:9,H =

H:
8
− H 9

E220
:
9,0
, (19)

1:9,0 = arctan(
H:
8
− H 9

G:
8
− G 9
), 1:9,G = −

H:
8
− H 9

E22 (0:9,0)2
, 1:9,H =

G:
8
− G 9

E22 (0:9,0)2
. (20)

r8 9 =

[
2 9 (C:3 ) − 2 9 (C

:
1 ), 2 9 (C

:
3 ) + 2 9 (C

:
6 ), 2 9 (C

:
6 ) − 0

:
9,0 + 0

:
9,GG

:
8 + 0:9,HH:8 , i:9 − 1:9,0 + 1

:
9,GG

:
8 + 1:9,HH:8 ,−

G:−1
8

Δ
,−
H:−1
8

Δ

])
. (23)

Algorithm 1 BRF-based joint sync&loc

1: Initialize p(/08 ) using information about MN position avail-
able via, e.g., GNSS

2: while MN is in LoS of AN 9 do
3: Calculate the mean vector and covariance matrix of the

prediction pdf using (12)
4: Perform the time-stamp exchange mechanism described

in Section II-B2 and Figure 3
5: Construct B8 9 , R8 9 , and r8 9 using the measurements

and obtain the mean vector and covariance matrix of
correction pdf using (24)

6: Compute the mean vector and covariance matrix of the
estimation /:8 using (25)

7: end while

3) Estimation: Considering (12) and (24), the estimated
distribution in (10) is given by

?(/:8 |c1
::
8 9 , i

1::
8 9 ) ∼ N (-est,�est), (25)

where

-est =
[
�pred + �corr

]−1 (
�corr-pred + �pred-corr

)
, (26)

�est =

[
�−1pred + �

−1
corr

]−1
. (27)

The parameters in (12), (24), and (25) are calculated recur-
sively and, in each iteration :, the estimation of the clock
skew, clock offset, and position can be obtained by

W̃:8 =
1

-est (1)
, \̃:8 =

-est (2)
-est (1)

, G:8 = -est (3), and H:8 = -est (4).
(28)

Algorithm 1 summarizes this recursive process.
It is worth mentioning that the position initialization has a

major impact on the performance of the algorithm and can,
if inappropriately chosen, lead to its divergence. In this work,
similar to [14], we assume that the initial position of the MN is
available via Global Navigation Satellite System (GNSS). The
initialization of clock parameters is, however, straightforward
and can be done, according to [7], [8], [18], with N(1,∞) and
N(0,∞) for clock skew and offset, respectively.

TABLE II
SIMULATION PARAMETERS

Parameters Values
# of independent simulations 1000
Initial random delays ( \̃8) [-1000, 1000] ns
Random acc. range ±[1, 2.5] m/s2

STD of acc. noise (f0G , f0H ) 2.5 m/s2

Period of joint sync&loc (Δ) 200 ms
Process noise covariance matrix (Q=) diag(10−12, 10−2, (0.5f0GΔ)2,

(0.5f0HΔ)2, f20G , f
2
0H
)

Max. velocity for scenarios (a), (b) 2, 14 (m/s)
AN density 50 m

IV. SIMULATION RESULTS AND DISCUSSION

We perform analysis for two scenarios shown in Figure 1,
which are regarded in [14] as challenging. In scenario (a),
a pedestrian moves with a constant velocity of 2 m/s (≈7
km/h) and takes the turns randomly until it exits the map. In
scenario (b), a car commences its journey by accelerating to
reach the velocity of 14 m/s (≈ 50 km/h). It continues moving
with constant velocity and decelerates upon approaching the
intersection until it completely stops (e.g. due to the red light).
The same repeats between two intersections. At the the second
intersection, it begins moving and takes the turn and continues
to accelerate to 14 m/s limit until it exits the map. All the turns
as well as acceleration (acc.) coefficients are chosen randomly.
Moreover, the Root Mean Square Error (RMSE) obtained by
[14] (i.e. 3m/0.5m and 10ns/4ns for position and clock offset
estimation of 1-AN/2-AN, respectively) serves as the baseline
to our approach. Nevertheless, [14] does not address the impact
of `) and variable velocity (scenario (b)). Finally, additional
simulation parameters can be found in Table II.

Figure 5 shows the RMSE of position and clock offset
estimation with respect to `) (or alternatively `') for f) =

f' = 0.2 ns. As can be seen, the RMSE of position increases
for the single AN (1-AN) as `) grows whereas it remains
almost unchanged for the two AN (2-AN) case. The reason is
disguised in (4) and (15). In the former, the position parameters
are impaired by random variable '8 9 ∼ N(`) , f2) ) while in
the latter by ('8 9 − '8;) ∼ N (0, 2f) ), which is obviously a
zero mean Gaussian variable and, therefore, indifferent to the
growth of `) . It is clear that if `' is not equal for the two
ANs (e.g. they feature different hardware), the RMSE of the
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Fig. 5. Performance of joint sync&loc algorithm (f) = 0.2ns). Slope of
increase in RMSE of position for 1-AN case = 0.28 m/ns.

2-AN case would increase as well, albeit with a smaller slope
than 1-AN case. Furthermore, for the same reason, the RMSE
of the clock offset estimation remains almost constant with the
increase of `) . Moreover, the gap between RMSE of the clock
offset estimation in two scenarios is due to the higher number
of time-stamp exchanges in (a) where the journey takes longer,
given the constant velocity of 2 m/s.

Figure 6 presents the RMSE of position and clock offset
estimation versus f) for `) = `' = 9 ns. It can be noticed that
the RMSEs of position and clock offset grow with the increase
of uncertainty in time-stamps. In particular, the growth rate in
RMSE of position is higher for 2-AN case as the uncertainty
in (4) differs from that of (15) by factor of two. In fact, this
growth for 1-AN case is very smooth that we can consider it as
negligible. Moreover, the RMSE of the clock offset estimation
increases for both 1-AN and 2-AN in both scenarios as (13)
and (14) are identical in all the cases. Again, the gap between
RMSE of clock offset estimation in two scenarios is due to
higher number of time-stamp exchanges in (a).

Considering both Figures, we can remark that while un-
certainty in time-stamping, i.e. f) and f', can be alleviated
relatively well using BRF (especially for 1-AN case), the delay
in time-stamping, i.e. `) and `', can only be mitigated by
either employing multiple ANs or improving the hardware
responsible for time-stamping. In particular, for sub-meter
accuracy localization via a single AN, the time-stamping
mechanism should be designed such that `) is kept below
3ns.

V. CONCLUSION AND FUTURE WORK

We presented an algorithm for joint sync&loc of mobile
users in communication networks. In particular, we leveraged
on asymmetric time-stamp exchange, which is traditionally
utilized for time synchronization, to estimate clock offset and
skew while simultaneously obtaining information about the
distance between ANs and MNs. Further on, we combined the
aforementioned information with AoA estimation to localize
the MNs. Simulation results indicate that while the perfor-
mance of the proposed algorithm is promising, the position
and clock offset estimation errors are highly dependent on the
delay in hardware time-stamping as well as its accuracy. We

0.0 0.5 1.0 1.5 2.0 2.5 3.0
σT (ns)

0

1

2

3

4

R
M

S
E

of
p

os
it

io
n

(m
)

improvement due to the second AN

Position, (a), 1-AN

Position, (b), 1-AN

Position, (a), 2-AN

Position, (b), 2-AN

0.00

0.25

0.50

0.75

1.00

1.25

R
M

S
E

of
off

se
t

(n
s)

gap due to the # of time-stamp exchange

Offset, (a), 1-AN

Offset, (b), 1-AN

Offset, (a), 2-AN

Offset, (b), 2-AN

Fig. 6. Performance of joint sync&loc algorithm (`) = 9ns). Slope of
increase in RMSE of position for 2-AN case = 0.15 m/ns.

mitigated the negative impact of this dependency by deploying
more ANs for performing joint sync&loc.

In this work, we drew on CRB of AoA to carry out
simulations. However, in practice, AoA estimation can be
challenging and impose limitation on the performance of the
algorithm. Therefore, in the future works, we will employ a
suitable AoA estimation algorithm and the hardware at our
disposal to evaluate the performance of our proposed joint
sync&loc algorithm in practice.
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