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Abstract—This paper addresses the problem of maximiz-
ing the capacity of a multiple-input multiple-output (MIMO)
link assisted by a beyond-diagonal reconfigurable intelligent
surface (BD-RIS). We maximize the capacity by alternately
optimizing the transmit covariance matrix, and the BD-
RIS scattering matrix, which, according to network theory,
should be unitary and symmetric. These constraints make
the optimization of BD-RIS more challenging than that of
diagonal RIS. To find a stationary point of the capacity we
maximize a sequence of quadratic problems in the manifold
of unitary matrices. This leads to an efficient algorithm
that always improves the capacity obtained by a diagonal
RIS. Through simulation examples, we study the capacity
improvement provided by a passive BD-RIS architecture
over the conventional RIS model in which the phase shift
matrix is diagonal.

Index Terms—Beyond diagonal reconfigurable intelligent
surface, multi-antenna communications, manifold optimiza-
tion.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) are emerging
as a new paradigm for the sixth generation (6G) of
wireless communications. Composed of a large number
of passive elements that can be tuned to modify their
electromagnetic reflection properties, an RIS can modify
the propagation channel to achieve favorable conditions
for wireless communications [1]–[5]. Conventional RIS
models, called single-connected RIS, lead to diagonal
scattering matrices. Recently, the concept of passive
beyond-diagonal RIS or BD-RIS has been proposed as a
generalization in which all RIS elements can be connected
by variable reactances to each other, thus leading to
fully connected scattering matrices which have to be
unitary and symmetric [6], [7], [8], [9]. These constraints
introduce new challenges in the optimization of the BD-
RIS matrix for different scenarios.

In [8], [10], the authors consider a multi-user multiple-
input single-output (MU-MISO) downlink channel as-
sisted by a multi-sector BD-RIS in which the RIS ma-
trices of each cell are single-connected and therefore

diagonal. The optimization of multi-sector BD-RIS co-
efficients is performed on the complex sphere manifold.
In [7], the same authors consider more general BD-
RIS models including fully-connected architectures with
hybrid (reflective + transmissive) BD-RIS, and perform
the optimization of the BD-RIS matrix on the Stiefel
manifold. Optimization techniques for BD-RIS with a
group-connected architecture of group size two have
been proposed in [11] which apply the convex-concave
procedure to convexify the unitary constraint. Closed-
form fully-connected BD-RIS solutions that maximize
the equivalent channel gain exist for single-input single-
output (SISO) and MISO/SIMO channels [9], [12]. The
solutions in [9] and [12] are based on two different
symmetric and unitary BD-RIS matrix factorizations, but
they are otherwise equivalent. More recently, an approx-
imate solution that maximizes the sum of the equivalent
channel gains when the direct channel is not blocked
in an MU-MISO scenario has been described in [13].
This suboptimal solution is based on solving a relaxed
problem (without considering the unitary and symmetric
constraint) and then projecting the relaxed solution onto
the set of symmetric and unitary matrices, for which a
closed-form solution exists. The optimization of a BD-
RIS to maximize the power received by users in an MU-
MISO scenario is considered in [14]. This work considers
a frequency-dependent model for the BD-RIS, but the
optimization is performed at a certain frequency called
priority frequency. Moreover, the restriction of a lossless
BD-RIS is not imposed in [14] and therefore the BD-RIS
matrix is not necessarily unitary, only symmetrical.

Most of the aforementioned works consider either
SISO or MISO/SIMO systems, maximizing the equivalent
channel gain or the sum rate in the downlink channel
[6], [8]–[11]. In this work, we consider a multiple-input
multiple-output (MIMO) link, possibly with an unblocked
direct channel, and propose an algorithm to maximize
its achievable rate by alternately optimizing the transmit
covariance matrix and the fully-connected BD-RIS. The
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Takagi decomposition [15], [16] allows us to factorize
the symmetric and unitary BD-RIS matrix as the product
of a unitary matrix and its transpose. This factorization is
exploited in the paper to derive an optimization algorithm
on the manifold of unitary matrices. The proposed algo-
rithm provides rate improvements over a diagonal RIS
that become more significant as the number of streams,
the number of BD-RIS elements, or the transmitted power
increases.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
We consider a MIMO link assisted by a BD-RIS in

which the transmitter is equipped with NT antennas,
the receiver is equipped with NR antennas, and the
RIS has M elements. We assume perfect channel state
information (CSI) at both the transmitter and the receiver.
The equivalent NR ×NT MIMO channel is

Heq = H+ FΘGH , (1)

where G ∈ CNT×M is the channel from the transmitter
to the RIS, F ∈ CNR×M is the channel from the RIS to
the receiver, H ∈ CNR×NT is the MIMO direct link, and
Θ is the M ×M RIS matrix.

A fully connected reflective BD-RIS can be modeled
as an M -port reciprocal network where each port is
connected to all other ports by a reconfigurable reactance.
The feasibility set for the BD-RIS scattering matrix is [6],
[7], [9]

T1 =
{
Θ | ΘHΘ = IM , Θ = ΘT

}
, (2)

where the unitary constraint ΘHΘ = IM means that the
RIS is passive lossless, whereas the symmetry constraint
Θ = ΘT comes from the fact that the RIS is a reciprocal
passive network for which the power losses are the same
between any pair of ports regardless of the direction of
propagation.

B. Problem Formulation
The transmitter sends proper Gaussian signals x ∼

CN (0,Rxx), with Rxx = E[xxH ] ⪰ 0 and tr(Rxx) ≤
P . Under these assumptions, the maximization of the
capacity of a BD-RIS-assisted MIMO link can be for-
mulated as follows:

(P1) : max
Θ,Rxx

log det

(
INR

+
1

σ2
n

HeqRxxHeq

)
(3a)

tr(Rxx) ≤ P, Rxx ⪰ 0 (3b)
Θ ∈ T1. (3c)

where σ2
nINR

is the noise covariance matrix of the
additive white Gaussian noise at the receiver, and Heq

is the equivalent channel in (1). Besides, (3b) are the
transmit covariance matrix constraints. In this paper, log
denotes the natural logarithm [nats].

III. CAPACITY MAXIMIZATION WITH PASSIVE BD-RIS

As it is usually done to solve this type of non-convex
problem, we consider an alternating optimization proce-
dure in which the covariance matrix Rxx is first optimized
for a fixed Θ and subsequently Θ is optimized for a fixed
Rxx, repeating the iterations until convergence.

A. Optimizing Rxx for a given Θ

For a fixed Θ, finding the optimal Rxx that maximizes
capacity is a convex problem whose solution is Rxx =
VPVH where V is the left eigenspace of the equivalent
MIMO channel matrix Heq and P = diag(P1, . . . , Pd)
is a diagonal matrix where Pi denotes the optimal power
allocated to the ith stream given by the water-filling
strategy to satisfy the power constraint

∑
i Pi = P .

B. Optimizing Θ for a given Rxx

Once Rxx is obtained we can define H = HVP1/2

and G = P1/2VHG. The new equivalent channel, with
the Rxx absorbed in H and G, is denoted as Heq(Θ) =

H + FΘG
H

, where we now stress the dependency of
the channel on the scattering matrix. The max-capacity
problem involving only the RIS is

(P2) : max
Θ∈T1

log det

(
INR

+
1

σ2
n

Heq(Θ)Heq(Θ)H
)
.

Problem P2 is non-convex because the capacity function
is non-concave over Θ. The standard technique to solve
this type of problem consists of applying a minorize-
majorization (MM) approach [17] based on a concave
lower bound expressed in the following lemma. This
lower-bound is proved in [18, Appendix B] and has
been used successfully multiple times in rate optimization
problems [5], [19], [20].

Lemma 1 ([18]). Let us denote

C(Θ) = log det

(
INR

+
1

σ2
n

Heq(Θ)Heq(Θ)H
)
,

given a feasible solution at iteration t, Θt, the following
concave-lower bound of the capacity exists.

C(Θ) ≥ Ct +
2

σ2
n

Re
{
tr(Ht(Heq(Θ)−Ht)

H)
}

− tr
(
RH

t

(
Heq(Θ)Heq(Θ)H −HtH

H
t

))
where Ct = C(Θt), Ht = Heq(Θt), and Rt =

1
σ2
n
INR

−(
σ2
nINR

+HtH
H
t

)−1
.

Let us define Ft = R
1/2
t F and Zt = σ2

nH
H
t −H

H
Rt.

After some straightforward calculations, the concave
bound can be expressed more compactly as

C(Θ) ≥ At + J(Θ), (5)



where we have defined

J(Θ) = 2Re
{
tr(ZtFΘG

H
)
}
− ∥FtΘG

H∥2F .

The minorizer of the capacity in (5) is a quadratic function
of the BD-RIS matrix Θ. Therefore, the optimization
problem that remains to be solved is the maximization
of J(Θ) subject to the unitary and symmetric constraints
for the BD-RIS matrix. To this end, we apply Tagaki’s
factorization which allows us to write the optimization
problem only under the constraint of unitarity. The Takagi
factorization [12], [15], [16] proves that any unitary and
symmetric complex matrix can be factored as Θ = QQT ,
where Q belongs to the manifold of complex unitary
matrices denoted here as U(M). We use this fact to
formulate the following optimization problem

(P3) : max
Q∈U(M)

J(QQT ). (6)

To solve (P3) we perform the optimization on the unitary
group [21]. The tangent plane at a point Q ∈ U(M) is
obtained by differentiating QHQ = IM , which yields

QH∆Q+∆QHQ = 0,

so the tangent plane, ∆Q, is composed of all M × M
matrices such that QH∆Q is skew-Hermitian. This is a
space of real dimension M2. Since the cost function is not
analytic, we use Wirtinger calculus taking derivatives with
respect to Q∗ assuming Q constant. Furthermore, from
Theorem 3.4 in [22] we have that the direction where the
real function J (from now on for notational simplicity
we drop the dependence of J on the matrix Q) has the
maximum rate of change is given by the complex matrix
derivative with respect to Q∗

∇Q∗J =
[
AH − (FH

t Ft)(QQT )(G
H
G)

]
Q∗ (7)

where A = GH
q ZtF. The projection of the unconstrained

gradient onto the tangent space at Q is πT (∇Q∗J) =
QSskew, where

Sskew =
(
(∇Q∗J)HQ−QH(∇Q∗J)

)
/2 (8)

is skew-Hermitian. Finally, to update the unitary matrix
we move along the geodesic starting at Q (the value at
the current iteration) with direction ∇Q∗J = QSskew as

Q = QeµSskew , (9)

where eA denotes here the matrix exponential. The learn-
ing step size, µ > 0, can be conveniently chosen and
adapted using a line search procedure. A summary of the
proposed method is shown in Algorithm 11.

1Matlab code can be downloaded from https://github.com/IgnacioSa
ntamaria/Code-BD-RIS-SPAWC2024.

Algorithm 1: Max. Capacity BD-RIS

Input: Initial Q ∈ U(M); H,F,G, σ2
n, P , µ,

convergence thresholds: ϵC , ϵJ
Output: Final BD-RIS Θ = QQT

1 while Cap. improvement larger than ϵC do
/* Update Rxx for a given Θ */

2 Obtain Rxx = VPVH via SVD+waterfilling
/* Update Θ for a given Rxx */

3 Obtain H = HVP1/2 and G = P1/2VHG
4 while Cap. improvement larger than ϵC do

/* Minorizer: J(QQT ) */
5 Obtain Ht, Rt, Ft, Zt, and A as

indicated in Sec. III-B
/* P3: Maximize J(QQT ) */

6 while ∥J(Θk+1)− J(Θk)∥ < ϵJ do
7 Calculate ∇Q∗J as (7)
8 Find Sskew as (8)
9 Update Q as (9)

IV. SIMULATION RESULTS

In this section, we evaluate the results of the max-
capacity BD-RIS algorithm. We compare the results with
a diagonal RIS whose phase shifts have been optimized to
maximize capacity using the algorithm in [23] (labeled as
RIS in the figures), and the solution for a BD-RIS recently
proposed in [13] (labeled as BD-RIS Low-complexity).
The latter algorithm finds a suboptimal (but closed-form)
solution for the maximization of the Frobenius norm
of the MIMO channel and subsequently performs the
projection of this solution onto the set of unitary and
symmetric matrices.

a) Scenario description: The transmitter with NT

antennas and the receiver with NR antennas are located
at (0,0,1.5) and (50,0,1.5), respectively, where all co-
ordinates are in meters. The RIS location is (d, 5, 5)
where d is varied along the x-axis from d = 10[m] to
d = 100[m].The bandwidth is 20 MHz and the system
operates at 2.4 GHz. The path loss is PL = PL0 −
α10 log10 d where PL0 = −28 dB is the path loss at
a reference distance of d0 = 1 meter and α is the path
loss exponent. The power spectral density for the additive
noise is σ2

n = −174 + 10 log10 B dBm. The transmit
power is P = 100 mW. The small-scale fading for the
direct MIMO link is modeled as a Rayleigh channel, and
for the large-scale fading we use a path-loss exponent
αd = 3.75. The path loss exponent for the channels G
and F through the RIS is α = 2 and the small-scale
fading is assumed to be Rician with a Rice factor γ = 3.
Other parameters are taken from [24].



b) Results varying the BD-RIS position: The first
scenario considers a 4 × 4 MIMO channel and a BD-
RIS with M = 100 elements. Fig. 1 shows the spectral
efficiency in (b/s/Hz) as the BD-RIS varies its location
along the x-axis from xRIS = 10 m. to xRIS = 100
m. For each RIS position, we average the result of 100
independent channel realizations. The highest achievable
rate is provided by the proposed BD-RIS algorithm,
which always improves the results of a diagonal RIS with
optimized phases, both being far superior to a diagonal
RIS with random phases. As a baseline, Fig. 1 also shows
the rate without RIS. Finally, the results of the closed-
form BD-RIS solution proposed in [13] can be even worse
than those of a diagonal RIS. This result is expected
because the low-complexity BD-RIS solution performs a
projection onto the set of unitary and symmetric matrices,
which is clearly suboptimal in terms of capacity. However,
we have observed that the solution in [13] provides a good
initialization for the iterative algorithm proposed in this
paper (typically better than a random initialization).

RIS position (m)

R
at

e 
(b

/s
/H

z)

Fig. 1: Achievable rate for a 4× 4 MIMO link assisted by an
BD-RIS with M = 100 elements.

c) Results varying the number of BD-RIS ele-
ments: Fig. 2 shows the rates when the number of BD-
RIS elements ranges from M = 10 to M = 100 when
the RIS coordinates are (50,5,5) for 2 × 2 and 4 × 4
MIMO channels. For a 2×2 channel, the solution in [13]
is quite competitive, especially for higher M values. As
the number of streams of the MIMO system grows the
differences between the proposed BD-RIS solution and
the method in [13] become more significant.

d) Results varying the Tx power: Finally, Fig.
3 shows the achievable rates obtained by varying the
input power between 4 and 30 dBms (which corresponds
approximately to SNRs at the receiver between 15 and
35 dB) for 4 × 4 and 8 × 8 MIMO links assisted by a

M (number of RIS elements)

R
at

e 
(b

/s
/H

z)

4  4

2  2

Fig. 2: Achievable rates for an increasing number of BD-RIS
elements M for 2× 2 and 4× 4 MIMO channels.

BD-RIS with M = 100 elements. The improvements of
the proposed algorithm are more appreciable for higher
transmitting powers. Finally, Fig. 4 shows the number of
active streams vs. the Tx power. This figure suggests that
the capacity improvements of BD-RIS over RIS can be
attributed to the fact that BD-RIS creates channels that
are better conditioned to support the transmission of a
larger number of streams (for lower SNR).

Power (dBm)
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4  4
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Fig. 3: Achievable rate vs. transmit power for BD-RIS and RIS.

V. CONCLUSIONS

We have proposed an algorithm for maximizing the
capacity of a MIMO link assisted by a fully connected
BD-RIS. The main difficulty of the resulting optimization
problem arises from the unitarity and symmetry con-
straints that the BD-RIS scattering matrix must satisfy.
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Fig. 4: Number of active streams vs. transmit power for BD-
RIS and RIS architectures.

We have applied Takagi’s factorization to overcome this
difficulty, which allows us to derive an optimization
algorithm in the manifold of unitary matrices. Compared
to a diagonal RIS, the improvements in the achievable
rates are more significant as the number of streams, the
number of reflector elements, or the transmitted power
increases. The proposed algorithm can be extended to
group-connected BD-RIS architectures, as well as to
multi-user MIMO networks. The development and anal-
ysis of these extensions remain as future work.
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