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On the Impact of Residual Transceiver Impairments

in mmWave RF Beamforming Systems
Author 1, Author 2, and Author 3

Abstract—Millimeter wave (mmWave) communication has
emerged as a key technology for achieving high data-rates and
low latency in 5G networks. Radio-frequency (RF) or analog
beamforming is used to provide additional (beamforming) gain
to compensate for propagation phenomena in the mmWave spec-
trum. In this letter, we analyzed the effects of residual transceiver
impairments on the performance of a single-user mmWave RF
beamforming system. We derived the closed-form expressions of
the ergodic capacity in both Line-of-Sight (LoS) and Non-Line-of-
Sight (NLoS) channels. The derived formulas are applicable for
both perfect and codebook-based beam alignment. In the former,
they are exact, while in the latter are approximate, but with a
high degree of accuracy. The theoretical findings are verified by
Monte-Carlo simulations showing an excellent agreement.

Index Terms—Beamforming, mmWave, impairments, RF.

I. INTRODUCTION

DUring the last decade, we are witnessing increased

demands for data rates and the shortage of spectrum

in particular for Sub-6 GHz links. This has motivated the

research community to explore new frequency bands that offer

significant improvements of communication bandwidth. In this

context, millimeter wave (mmWave) communication has been

recognized as a candidate technology for achieving high data

rates and low latency in 5G wireless networks [1].

The mmWave spectrum, however, brings along technical

difficulties and physical phenomena that limit the desired

capacity. The mmWave channel is directional with limited

scattering, and it is characterized by high attenuation and ab-

sorption losses [2]. Beamforming creates transmit and receive

beamforming gains to obtain a high enough signal-to-noise ra-

tio (SNR) for signal reception [3]. This is supported by the use

of small wavelengths, which allow a high number of antennas

to be densely packed to form large arrays. Furthermore, large

signal bandwidths require very high sample rates, requiring the

involvement of high cost and power-hungry analog-to-digital

converters (ADC). This limits the number of radio-frequency

(RF) chains mmWave transmitters and receivers can feature.

This, in turn, imposes some constraints on beamformer types.

Motivated by the above, a lot of research work in recent

years has been devoted to different aspects of mmWave beam-

forming communications. Some of these cover, for instance,

system performance analysis [4], [5], channel estimation tech-

niques [6], beam training algorithms [7], [8], codebook design

[9], beam tracking algorithms [10], hybrid beamforming ar-

chitectures and algorithms [11], [12], etc. However, less work

has been devoted to the performance analysis of mmWave RF

beamforming systems subject to transceiver impairments from
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Fig. 1. An illustration of a mmWave RF beamforming system.

the information-theoretic point of view. In one such example

[13], the authors have studied transmitter impairments and

derived an upper bound for the capacity of a mmWave RF

beamforming system in a Non-Line-of-Sight (NLoS) channel.

In this Letter, we derived the exact analytical expressions of

the ergodic capacity of a mmWave RF beamforming system.

The theoretical analysis covers both Line-of-Sight (LoS) and

NLoS channels and incorporates the effects of residual trans-

mitter and receiver impairments. The closed-form expressions

are then verified via Monte-Carlo simulations.

This rest of the Letter is structured as follows: Section

II introduces the system, channel, and impairment models.

Analytical derivations are presented in Section III, whereas

both theoretical and numerical results are covered in Section

IV. The conclusion is given in Section IV.

II. SYSTEM, CHANNEL AND IMPAIRMENT MODELS

A. System Model

We consider a mmWave RF beamforming system featuring

uniform linear antenna arrays (ULAs) at both transmitter and

receiver, as shown in Fig. 1. The transmitter has Nt antennas,

and the receiver uses Nr antennas for signal reception. A single

RF chain is considered. Assuming perfect synchronization,

and a transmitted symbol s with the unit power Ps = 1, the

received signal is [9]

y =
√
ρwH

Hfs+w
H
n, (1)

where ρ represents the average received power, f and w

are the unit norm transmit and receive beamforming vectors,

respectively, H ∈ CNr×Nt is the channel matrix, and n is the

additive Gaussian noise vector satisfying E
[
nn

H
]
= σ2

nINr
.

Owing to (1), the received SNR is

SNR = SNR0|wH
Hf |2, (2)

with SNR0 = ρ
σ2
n

. To maximize (2), a joint Tx/Rx beamform-

ing is performed as

argmax
w,f

|wH
Hf |2. (3)
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If H is known, the optimal w and f are found by the singular

value decomposition (SVD) [9]. Otherwise, the transmitter and

the receiver sense the channel by testing the beamforming

vectors from their respective codebooks (i.e. w ∈ W, f ∈ F ),

and select a pair of beamforming vectors that maximizes (3).

Denoting heff the effective channel obtained after the joint

Tx/Rx beamforming in (3), (1) can be rewritten as

y =
√
ρheffs+ neff , (4)

where neff is the effective noise, satisfying E

[
neffn

H
eff

]
= σ2

n.

Now, the ergodic capacity is given by [17]

R = E

{

log2

(

1 + SNR0 |heff |2
)}

. (5)

B. Channel Model

We adopt the L-scatter channel model [9], expressed as

H =
√

γNrNt

L−1∑

p=0

αpar(θp)at(φp)
H , (6)

where L is the number of resolvable paths corresponding to

the limited number of scatters, αp ∼ CN (0, σ2
p) is the gain of

the p-th path, while φp and θp are the normalized angles of

departure and arrival (AoDs/AoAs) in azimuth, respectively.

γ =
(
∑L−1

p=0 E(|αp|2)
)−1

is the power normalization factor

to (6). The normalized AoDs and AoAs are in the range [-

1, 1], and are related to the physical AoDs and AoAs as

φp = 2d
λ
sin(Φp) and θp = 2d

λ
sin(Θp), where λ is the carrier

wavelength and d = λ/2 is the spacing between adjacent

antennas. The physical AoDs and AoAs are in the range [-

π/2, π/2]. ar and at are the array response vectors at the

transmitter and the receiver, respectively. For an ULA with N
antennas, the array response vector is given by [9]

a(φ) =
1√
N

[

1, ejπφ, ..., ej(N−1)πφ
]

. (7)

An extension to a planar array is straightforward.

With the channel model in (6), both LoS and NLoS channels

can be considered. In a LoS channel, there is a dominant path.

Typically, one sets the first path to be the LoS with a variance

of σ2
0 and random AoD and AoA. The remaining paths are

NLoS, having, for instance, 10-20 dB smaller variance (i.e.

σ2
1 = σ2

2 = ... = σ2
L−1 = σ2

0/A, being A the attenuation

factor) and random AoDs and AoAs. The aim of the joint

Tx/Rx beamforming is to find the best path, i.e. the LoS path.

In an NLoS channel, all paths are NLoS and, typically, have

the same variance (i.e. σ2
0 = σ2

1 = ... = σ2
L−1 = σ2), and

random AoDs and AoAs. In this case, an arbitrary strong path

can be feasible during the joint Tx/Rx beamforming.

C. Residual Impairments Model

Practical communication systems suffer from hardware im-

pairments. Ideally, the effect of these impairments should be

investigated jointly, although they can be analyzed separately

[14]. Compensation schemes are often applied, leading to a

residual distortion noise (see [15] and references therein) that

can be approximated by independent additive distortion noise

at both transmitter and receiver [15].

By virtue of [15], and building on (4), the system model

that includes residual hardware impairment due to transmitter

and receiver is given by

y =
√
ρheff(s+ ηt) + ηr + neff , (8)

where ηt and ηr represent the residual distortion noises and,

according to [15], are modeled by

ηt ∼ CN (0, κ2
tPs) ηr ∼ CN (0, ρκ2

r |heff |2Ps). (9)

The parameters κt and κr define the level of Tx and Rx

impairments, respectively. These are connected to the error

vector magnitude (EVM), which is a figure of merit of an RF

transceiver. The transmitter EVM is defined by [15]

EVM =

√

Eηt(|ηt|2)
Es(|s|2)

= κt. (10)

According to the IEEE 802.11ad standard [16], single-

carrier (SC) mode, the transmitter EVM is specified in the

range from -21 to -6 dB, which sets κt ∈ [0.089, 0.5]. By

regrouping the terms in (8), a joint Tx and Rx distortion noise,

∆ ∼ CN
(
0, ρκ2|heff |2

)
is defined, where κ =

√

κ2
t + κ2

r

denotes the level of joint Tx and Rx impairments.

The ergodic capacity can now be expressed as

R = E

{

log2

(

1 +
|heff |2

|heff |2κ2 + SNR0
−1

)}

. (11)

If κ = 0 (i.e. an ideal system) is set in (11), (5) is obtained.

III. ANALYTICAL DERIVATION

A. Derivation of |heff |2 Statistics

To solve the expectation in (11), the statistics of |heff |2
is required. The statistics are driven by the channel sensing

process in the joint Tx/Rx beamforming. To detect AoDs (or

AoAs), we select N(= Nt or Nr) beamforming vectors to

cover the range [−π/2, π/2]. Basically, we uniformly quantize

the range of sin(φ), i.e. [-1, 1], into N bins and use the angle

corresponding to the center of each bin as the beamforming

direction. Thus, the beamforming vectors are designed as

wi, fi = a (ϕi) , ϕi = −1 +
2i+ 1

N
, i = 0, ..., N − 1. (12)

Let us now concentrate, for instance, on the 0-th path and

assume that its AoD falls in the i-th bin of the Tx and its

AoA in the j-th bin at the Rx side. The effective channel gain

w.r.t. wj ,fi reads

|wH
j Hfi|2 =

∣
∣
∣
∣

√

γNrNtα0w
H
j ar(θ0)at(φ0)

H
fi+

√

γNrNt

L−1∑

p=1

αpw
H
j ar(θp)at(φp)

H
fi

∣
∣
∣
∣

2

. (13)
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Fig. 2. Fejér kernel for N=16.

The previous expression can be bounded using the triangle

identity [18, Ch. 15], with the upper bound given by

|wH
j Hfi|2 ≤ γNrNt|α0|2|wH

j ar(θ0)|2|at(φ0)
H
fi|2+

γNrNt

L−1∑

p=1

|αp|2|wH
j ar(θp)|2|at(φp)

H
fi|2, (14)

whereas the lower bound reads

|wH
j Hfi|2 ≥ γNrNt|α0|2|wH

j ar(θ0)|2|at(φ0)
H
fi|2−

γNrNt

L−1∑

p=1

|αp|2|wH
j ar(θp)|2|at(φp)

H
fi|2. (15)

Obviously, the non-sum term dominates. The square magni-

tude of the inner product of two beamforming vectors is

|a(φ)a(ϕ)|2 =
1

N2

∣
∣
∣
∣
∣

sin π(φ−ϕ)N
2

sin π(φ−ϕ)
2

∣
∣
∣
∣
∣

2

:= FN (φ− ϕ). (16)

The term FN (φ− ϕ) is the Fejér kernel of the order N [19],

and it represents the beam pattern of an ULA (see Fig. 2).

As the other paths fall in far bins (Ω > 2/N ), the sum terms

are negligible, thus we can express (15) as

|wH
j Hfi|2 ≈ γNrNt|α0|2FNr

(θ0−ϕj)FNt
(φ0−ϕi). (17)

For extremely large arrays (i.e. the Fejér kernel tends to 1 as

N → ∞) or when the beamforming directions are aligned

with the AoA and AoD, (17) reads

|wH
j Hfi|2 ≈ γNrNt|α0|2. (18)

Under the above assumption, after going through all beam-

forming vectors pairs, |heff |2 is obtained as follows

|heff |2 = γNrNtmax{|α0|2, |α1|2, ...., |αL−1|2}. (19)

The effective channel is a random variable (RV) determined

from L independent and identically distributed (i.i.d.) ex-

ponential RVs with a mean βp = NrNtσ
2
p using the max

operation. Now, CDF and PDF can be derived in both NLoS

and LoS scenarios.

1) CDF and PDF in an NLoS scenario: In an NLoS chan-

nel, all paths have the same variance σ2
p = σ2, p = 0, ..., L−1.

From (19), the RV |heff |2 is a max of L i.i.d. exponential RVs,

having the equal mean of β = γNrNtσ
2. The CDF is given

by

F|heff |2(x) =
(

1− e−
x
β

)L

, (20)

which, after applying the binomial expansion, can be expressed

as

F|heff |2(x) =

L∑

l=0

(−1)l
(
L

l

)

e−
lx
β . (21)

By taking the derivative of (21), the PDF is obtained as

f|heff |2(x) =

L∑

l=0

(−1)l+1

(
L

l

)
l

β
e−

lx
β . (22)

Note that the PDF is zero for l = 0.

2) CDF and PDF in a LoS scenario: In a LoS channel,

there is a dominant path with the power gain σ2
0 , while the

other paths are weaker, having the variance σ2
p = σ2

0/A, p 6=
0. Here, after the joint Tx/Rx beamforming, the LoS path is

always chosen. The CDF of |heff |2 is given by

F|heff |2(x) =
(

1− e−
x
β0

)(

1− e−
x
β

)L−1

, (23)

where β0 = γNrNtσ
2
0 and β = β0/A. After applying the

binomial expansion, (23) reads

F|heff |2(x) =

L−1∑

l=0

(−1)l
(
L− 1

l

)

e−
lx
β −

L−1∑

l=0

(−1)l
(
L− 1

l

)

e−
x(lβ0+β)

β0β . (24)

By taking the derivative of (24), the PDF is expressed as

f|heff |2(x) =

L−1∑

l=0

(−1)l+1

(
L− 1

l

)
l

β
e−

lx
β −

L−1∑

l=0

(−1)l+1

(
L− 1

l

)

(
l

β
+

1

β0
)e−

x(lβ0+β)

β0β . (25)

Unlike the NLoS case, the PDF is nonzero for l = 0, and

equals f|heff |2(x) = (L− 1)/β0 exp (−x/β0).

B. Capacity Analysis

We introduce substitute variables x = |heff |2, c = κ2 and

d = SNR0
−1, and express (11) as

R =
1

ln 2







E

{

ln

(

x
c+ 1

d
+ 1

)}

︸ ︷︷ ︸

I1

− E

{

ln
(

x
c

d
+ 1

)}

︸ ︷︷ ︸

I2







.

(26)

Using the identity ln(ax + 1) = G1,2
2,2

(

ax|1,11,0

)
1 [17], two

expectations are

I1 =

∫ ∞

0

G1,2
2,2

(
c+ 1

d
x|1,11,0

)

fx(x)dx, (27)

I2 =

∫ ∞

0

G1,2
2,2

( c

d
x|1,11,0

)

fx(x)dx. (28)

1G
m,n
p,q

(

x|
a1,...,ap

b1,...,bq

)

is the Meijer’s G function [18, Eq. 9.301]
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In the NLoS scenario, by substituting (22) in (27) and (28),

and with the help of [18, Eq. 7.813.1] and [18, Eq. 9.31.1],

the ergodic capacity is derived as

RNLoS =
1

ln 2

L∑

l=1

(−1)l+1

(
L

l

)

×
{

G1,2
2,1

(
β

l
(1 + κ2)SNR0|1,11

)

−G1,2
2,1

(
β

l
κ2SNR0|1,11

)}

.

(29)

In the LoS scenario, the combination of (25), (27) and (28),

results in four integrals that are solved with the help of [18,

Eq. 7.813.1] and [18, Eq. 9.31.1]. The ergodic capacity reads

RLoS =
L− 1

ln 2

{

G1,2
2,1

(

β0(1 + κ2)SNR0|1,11

)

−

G1,2
2,1

(

β0κ
2SNR0|1,11

)}

+
1

ln 2

L−1∑

l=1

(−1)l+1

(
L− 1

l

)

×
{

G1,2
2,1

(
β

l
(1 + κ2)SNR0|1,11

)

−G1,2
2,1

(
β

l
κ2SNR0|1,11

)

−

G1,2
2,1

(
ββ0

lβ0 + β
(1 + κ2)SNR0|1,11

)

+

G1,2
2,1

(
ββ0

lβ0 + β
κ2SNR0|1,11

)}

. (30)

Owing to [20, p. 229, eq. 5.1.20], G1,2
2,1

(

x|1,11

)

=

exE1(x), which can be further bounded 0.5 ln(1 + 2/x) <

G1,2
2,1

(

x|1,11

)

< ln(1 + 1/x).

Eqs. (29) and (30) are exact in the case of extremely large

arrays, where the Fejér kernel in (19) tends to one, or when

the directions of beamforming vectors f and w are perfectly

aligned with the AoD and AoA, respectively. The latter is

only possible in the case of adaptive beamforming. However,

typically, the transmitter and the receiver use a finite number

of beamforming directions (codebook-based beamforming), so

the perfect alignment is not always achieved. Nevertheless,

even if the AoD/AoA do not fall at the center of a bin, but

there is a random offset, the two expressions can be used if β
and β0 are scaled by a proper scaling factor. Intuitively, if the

AoD and AoA are uniformly distributed within the bin, one

can find the expected value of the Fejér kernel as

EΩ{FN (Ω)} ≈ 2

N

∫ 1
N

0

sinc2
(
πΩN

2

)

dΩ =
2

π

(

Si(π)− 2

π

)

,

(31)

where Si(t) is the Sine integral [20, Eq. 5.2.1]. The expected

value (≈ 0.77395) does not depend on the array size N and

its square represents the scaling factor for β and β0 in (29)

and (30), which will be validated in the next section.

IV. RESULTS

In this section, the simulation results are given and com-

pared with the theory. We set κt = κr = {0.1, 0.3} and L = 5.

In the LoS channel, the LoS path has the average power of

σ2
0 = 1, whereas the remaining paths have a 10 dB smaller

variance (A = 10), i.e. σ2
p = 0.1. The power normalization

factor is γ = A/σ2
0(A + L − 1). In the NLoS channel, all

paths have the same power of σ2
p = 1, hence γ = 1/L. AoDs

and AoAs are uniformly distributed over [−π/2, π/2]. In the

joint Tx/Rx beamforming, perfect alignment of the directions

of transmit and receive beamforming vectors and the AoDs

and AoAs of L paths is assumed. (This would be the case of

adaptive beamforming). The process of selecting the best path

is then described by (19). 5000 simulation runs are performed.

The ergodic capacity of a mmWave RF beamforming system

with Nt = Nr = 64 antennas is plotted in Fig. 3, for both

NLoS and LoS channel. A similar performance tendency is

observed for both channels. In the high SNR region, the NLoS

and LoS curves are overlapping and experiencing the same

ceiling effect. From (11), the limit can be deduced as C∞ =
log2(1+(κ2

t +κ2
r)

−1). The curves differ only in the low SNR

region.

For the NLoS channel, the impact of the array size on

the ergodic capacity is depicted in Fig. 4. The result for the

LoS channel is omitted due to space limitation, but a similar

behavior is observed. Obviously, as the array size increases,

the achievable capacity increases due to higher beamforming

gains.

The results in the case of codebook-based beamforming are

given in Fig. 5. Here, the transmit and receive beamforming

vectors as defined in (12) are used in the joint Tx/Rx beam-

forming. Due to a limited number of beamforming directions

(N = Nt = Nr =64), the perfect alignment is not always

achieved. Owing to our discussion in the last paragraph of

Sec. III, the scaling factor from (31) is applied in (29) and
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(30) to obtain the theoretical results. Also, the results are

compared with those where the perfect alignment with the

AoDs/AoAs is achieved (i.e. adaptive beamforming). It can

be observed that the theoretical and the simulation results

match very well, for both LoS and NLoS channels. Moreover,

the codebook-based beamforming experiences a capacity loss

when compared to the adaptive beamforming. Its origin is due

to the imperfect alignment of the beamforming vectors and

the AoD and AoA. The loss can be numerically calculated

by finding the difference between capacities and is plotted for

an example configuration in Fig. 6. For Nt = Nr = 64 and

κt = κr = 0.1, the maximum capacity loss is reached at SNR

of -22 dB for the NLoS and -24 dB for the LoS channel. For

both channels, there is a similar capacity loss of almost 0.5

b/s/Hz at SNR ≈ −27 dB.

V. CONCLUSION

We have derived the closed-form analytical expressions of

the ergodic capacity of millimeter wave (mmWave) radio-

frequency (RF) beamforming systems in Line-of-Sight (LoS)

and Non-Line-of-Sight (NLoS) channels. Our numerical study

has revealed that the derived formulas are exact in the case

of perfect beam alignment, while they are approximate, but

with a high degree of accuracy, for codebook-based alignment.

Moreover, the derived expressions take into account the impact

of residual transceiver impairments on the ergodic capacity.

The promising results present this work as a key tool for

assessing the capacity of RF beamforming systems without

the need to carry out exhaustive Monte-Carlo simulations.
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