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Abstract

The reliable and compact modeling of RRAM devices is crucial for supporting the development of novel technologies including

them. The latter includes a wide range of applications, such as in-memory computing in neuromorphic networks or memristive

logic. A major advantage of the considered HfO2- based RRAM devices is their CMOS-compatibility, which allows them to

already be utilized in present applications. However, one problem with RRAMs is that their fabrication still leads to device

variabilities. This makes it challenging to test the functionality of aspiring technologies utilizing them in an experimental

fashion. This work is dedicated to the compact modeling and efficient emulation of 1T-1R RRAM devices. Specifically, we

aim to provide an enhanced model, based on the Stanford-PKU model, that can be used on any simulation platform such as

SPICE, VERLIOGA, or even standard ODE solvers to simulate multilevel capable RRAM devices. Furthermore, we provide

an algorithmic model, based on the wave digital concept, which allows for emulating the considered RRAM device in real-

time. Using the latter, we show the hysteresis of our enhanced model to exhibit astounding resemblance with real device

measurements.
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Bakr Al Beattie1, Emilio Pérez-Bosch Quesada2, Max Uhlmann2,

Eduardo Perez2, Gerhard Kahmen2, Enver Solan1, and Karlheinz Ochs1

1Ruhr-University Bochum, Chair of Digital Communication Systems, Bochum, Germany
Email: {bakr.albeattie, enver.solan, karlheinz.ochs}@rub.de

2IHP-Leibniz-Institut für Innovative Mikroelektronik, Frankfurt (Oder), Germany
Email: {quesada,uhlmann,perez,kahmen}@ihp-microelectronics.com

Index Terms—RRAM, 1T-1R, modeling, wave digital emula-
tion, memristive systems, neuromorhpic

Abstract—The reliable and compact modeling of RRAM de-
vices is crucial for supporting the development of novel technolo-
gies including them. The latter includes a wide range of applica-
tions, such as in-memory computing in neuromorphic networks
or memristive logic. A major advantage of the considered HfO2-
based RRAM devices is their CMOS-compatibility, which allows
them to already be utilized in present applications. However, one
problem with RRAMs is that their fabrication still leads to device
variabilities. This makes it challenging to test the functionality of
aspiring technologies utilizing them in an experimental fashion.
This work is dedicated to the compact modeling and efficient em-
ulation of 1T-1R RRAM devices. Specifically, we aim to provide
an enhanced model, based on the Stanford-PKU model, that can
be used on any simulation platform such as SPICE, VERLIOG-
A, or even standard ODE solvers to simulate multilevel capable
RRAM devices. Furthermore, we provide an algorithmic model,
based on the wave digital concept, which allows for emulating
the considered RRAM device in real-time. Using the latter, we
show the hysteresis of our enhanced model to exhibit astounding
resemblance with real device measurements.

I. INTRODUCTION

Resistive Random Access Memory (RRAM) devices are
two terminal devices with the capability of rapidly switching
between several resistance states. This ability is attributed
to their memory property, which relates to the formation
process of a conductive filament [1]. These devices have been
popularized over the recent years, as they have been shown
to be suitable candidates for a wide range of applications
[2]–[5]. In particular, they are well-suited for neuromorphic
applications in which they are commonly used to mimic
the behavior for biological synapses [6]–[8]. However, their
fabrication is an ongoing topic of research, which still re-
quires some time to reach a state of maturity [9]–[11]. In
this context, device variabilities, such as device-to-device and
cycle-to-cycle variabilities, are currently issues [12], [13] that
hinder experimental pre-investigations of modern technologies
with these devices. Moreover, RRAMs are gaining popularity
mainly due to the possibility to monolithically integrate them

within the CMOS process, which makes their reliable mod-
eling essential for the majority of research that is oriented
towards designing circuits including them. For that reason,
a lot of work has been (and still is being) invested into the
reliable and compact modeling of these devices, such that,
to our knowledge, more than 10 different models have been
developed to describe their dynamical behavior. A collective
study discussing the similarities, differences, and features of
many of these models has been recently carried out [14].

In this work, we aim to address three different problems,
which we have observed in the context of modeling and simu-
lating RRAMs with the well-established Stanford-PKU model
[15]. First, we have noticed that simulations, which are purely
based on the mathematical equations appearing in the said
model, do not yield the desired hysteresis. This is because the
model does not take the NMOS-transistor into consideration,
which is a part of the 1T-1R architecture. Thus, we introduce
modifications to the model, so it can be used on any simulation
platform such as SPICE or even standard numerical integrators
without having to use the NMOS-transistor. Second, the reset
process of the Stanford-PKU model is very different from the
one of the real device. In particular, the shift in the reset
voltage that is exhibited by multilevel capable RRAMs has
yet to be considered in the model. Therefore, we introduce
a simple modification to the model, which brings the reset
process much closer to that of the actual device. Third, while
simulations might be useful for pre-investigating memristive
circuits utilizing RRAMs, they tend to become very slow as
the number of memristors increases. Furthermore, they do
not allow tuning parameters during runtime and can not be
used as placeholders for RRAMs in actual circuits for design
purposes. For that reason, we introduce a software wave digital
emulator. Wave digital algorithms are known for their massive
parallelism, high robustness, and fault tolerance [16]–[18],
which allows real-time capable emulation of large networks,
even with memristors [19]. More details on this concept are
given in section IV.

The remainder of this paper is organized as follows: We
start with a description of the considered HfO2-based RRAMs
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in section II, where we explain the physical phenomenon
behind their functionality. In section III, we introduce the
modifications that we have made to enhance the baseline
Stanford-PKU model. Section IV briefly recapitulates the wave
digital concept and demonstrates the wave digital model used
for emulation purposes, which yields the results presented in
section V. Here, we also discuss the differences between our
enhanced model and the baseline Stanford-PKU model and
justify the modification that we have made. Finally, section VI
gives a conclusion and summarizes the main contributions of
this work.

II. EXPERIMENTAL DESCRIPTION

The RRAM devices under study are arranged in a one-
transistor-one-resistor (1T-1R) structure. It consists of a
NMOS transistor (1T) fabricated in the 130 nm CMOS tech-
nology node, connected in series to a metal-insulator-metal
(MIM) stack with memristive features (1R). Fabricated on
Metal 2 of the back-end of line (BEOL) of the CMOS process,
the MIM integrates a TiN/Al:HfO2/Ti/TiN stack in which top
electrode (TE) and bottom electrode (BE) are both composed
of 150 nm thick TiN layers deposited by sputtering. The 7 nm
Ti layer was grown below the TE also by sputtering, acting as
oxygen-scavenging capping layer that enhances the switching
capabilities of the dielectric layer (i.e. retention, resistance
window, switching speed) [20]. The insulator consists of a
6 nm Al-doped (about 10%) HfO2 dielectric layer grown by
atomic layer deposition (ALD). The MIM structures were
patterned with an approximate area of 0.4µm2. To enable
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Fig. 1: A sketch of the HfO2-based RRAM device and its
gap distance in the high resistance state (top) and in the low
resistance state (bottom). Here, g denotes the gap distance in
the conducting filament, which is greater than zero in the high
resistance state and equals to zero in the low resistance state.

the switching properties of the active dielectric layer, it is
necessary to carry out a forming procedure. This operation
is performed by applying a positive voltage to the TE of
the RRAM devices unchaining an electrical breakdown that
moves the device from its pristine state to the low resistive

state (LRS). With this initial step, a predominant conductive
filament (CF) composed by oxygen vacancies is built for the
first time, suddenly allowing the current flow through the 1T-
1R structure. Consecutively, the device can be moved to the
high resistive state (HRS) by means of the reset operation.
This is achieved applying a negative voltage able to move
the oxygen vacancies towards the TE, disrupting the main
CF and creating the gap distance between the filament’s tips.
This process is reversible by means of the set operation. The
latter consists of applying a positive voltage to the TE able
to move the oxygen vacancies towards the BE re-building the
CF and allowing the current flow through the device again
(see Figure 1). The role of the NMOS transistor is not only to
impose a compliance current level to protect the RRAM device
against current overshoots when accomplishing the forming
and set operations, but also to enable the multilevel-cell (MLC)
[21]. Tuning the gate voltage of the transistor during the
set operation allows modulating different current compliance
levels to control the CF’s conductivity. That is, the higher the
compliance current imposed during the set operation the more
conductive the LRS is. In this work, we target four different
conductive levels, namely HRS, LRS1, LRS2 and LRS3, being
LRS3 the most conductive state and HRS the highest resistive
state. The three LRSs are programmed setting the gate voltage
to 1.0V, 1.2V, and 1.6V during the set operation. The HRS is
achieved setting the gate voltage to 2.7V, which (maximally)
reduces the series resistance of the NMOS transistor during the
reset operation. For further experimental details, the interested
reader is referred to [13].

III. ELECTRICAL MODEL

A prerequisite for wave digital emulation is the synthesis of
a so-called reference circuit. The latter denotes the underlying
electrical model, which is based on a physical or mathematical
description of the considered circuit. In this section, we start by
recapitulating a known model for describing multilevel RRAM
devices and then demonstrate the modifications that we have
made to obtain an enhanced model.

A. Stanford-PKU Model with Multilevel Capability

The Stanford-PKU model is a well-established mathemati-
cal model for the dynamical behavior of RRAM devices. The
model attempts to describe the change in the device’s gap
distance g(t) depending on the voltage u(t) across the device:

ġ(t) = −v0 exp

(
− Ea

kBT

)
sinh

(
γ
da
dox

e

kBT
u(t)

)
. (1a)

Here, the gap distance is limited to be in the interval g(t) ∈
[gmin, gmax], where gmin and gmax denote the minimal and
maximal gap distance, respectively. The constant Ea is the
activation energy, kB is the Boltzmann constant, da is the atom
spacing, e is the charge constant, dox is the dielectric thickness,
and v0 is a velocity fitting parameter. The device temperature
T is modeled to be a function of the dissipated power p(t),

T = T (p) = T0 + p(t)Rth , with p(t) = u(t)i(t) , (1b)
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where T0 denotes the room temperature, i(t) is the current
flowing through the device, and Rth is the device’s thermal
resistance. The variable γ is the field local enhancement vari-
able that accounts for the material’s polarizability depending
on the current gap distance:

γ = γ(g) = γ0 − β

[
g(t)

ḡ

]α
. (1c)

Here, γ0, β, ḡ, and α are all fitting parameters. Finally, the
current flowing through the device is given by

i(t) = I0 exp

(
−g(t)

g0

)
sinh

(
u(t)

U0

)
, (1d)

where I0, g0, and U0 are fitting parameters. For a better
understanding of the role of all fitting parameters that have
appeared up to this point, the interested reader is referred to
[12], [15].

In [12], the classical Stanford-PKU model has been ex-
tended to incorporate the multilevel capability of modern
RRAM devices. This is a method of controlling the low
resistance state (LRS) in dependency of the gate voltage ug of
the NMOS-transistor. The latter sets the compliance current,
which presumably, allows for a widening of the conductive
filament with increasing drain current [12], [22], [23]. To take
this phenomenon into consideration, the minimal gap distance
is modeled to be anti-proportional to the applied gate voltage:

gmin = gmin(ug) =
1

Eth

W/L

ug
+ dth . (2)

Here, W/L accounts for the aspect ratio of the NMOS
transistor, while Eth and dth are parameters of the 1T-1R
device, to fit the model experimental multilevel measurements.

In the following section, we introduce a modified version of
the Stanford-PKU model (with multilevel capability), whose
dynamics is closer to those of the actual device. We would
like to highlight the enhancements in the reset process, which
we will show to be remarkably closer to the real device.

B. An Enhanced Memristor Model

In the following, we aim to mathematically describe a 1T-1R
device as a general memristive system, see for example [24],
[25]. To this end, we associate the gap distance g(t) with the
unitless internal state of a memristive system:

z(t) =
g(t)

gmax
, with z(t) ∈ [zmin, 1] , (3a)

zmin = zmin(ug) = gmin(ug)/gmax . (3b)

Here, we have normalized the gap distance, so the internal state
z(t) is limited to be between zmin and 1. The Stanford-PKU
model describes the RRAM device as a voltage-controlled
device, hence our model is that of a voltage-controlled mem-
ristive device,

i(t) = W (z, u)u(t) , (3c)

W (z, u) =
I0
U0

exp

(
− z

z0

)
sih

(
u

U0

)
, (3d)

ż = f(z, u, ug) , (3e)

where we define sih(0) = 1, otherwise sih(u) = sinh(u)/u
and z0 = g0/gmax. The function W (z, u) is the so-called
memductance, which describes the conductivity of the device
in dependency of the applied voltage and its internal state. The
nonlinearity of the dynamical state equation is given by:

f(z, u, ug) = −v0(u, ug)

gmax
exp

(
− Ea

kBT

)
. . .

sinh

(
γ(z, u)

da
dox

e

kBT
[u− sgn(u)uth]

)
, (3f)

sgn(u) =


1, u > 0

−1, u < 0

0, u = 0

. (3g)

Essentially, this equation corresponds to the baseline gap evo-
lution equation (1a) of the Stanford-PKU model. However, we
have now introduced a few changes. First, we have a threshold
voltage uth, which (uniformly) effects the device’s switching
behavior during the set and reset process. Furthermore, the
velocity parameter v0 is now a function of both the applied
voltage u and the gate voltage ug,

v0(u, ug) = v0σ(u) + [1− σ(u)]
v0

ζη(ug)
, (3h)

η =
ug − ug,0

Û
, σ(u) =

{
1 , u ≥ 0

0 , otherwise
, (3i)

where Û is a voltage normalization constant, ug,0 is a voltage
fitting parameter, ζ is unitless fitting parameter, and σ(·)
denotes the step function. This modification allows the velocity
parameter v0 to have different values during the set and reset
process. Controlling the velocity parameter is essential for
bringing the reset process of the model closer to that of the
actual device. A similar modification is made to the field local
enhancement variable γ, which is now a function of the applied
voltage u in addition to the internal state,

γ(z, u) = γ0(z, u)σ

(
1

Ê

γ0(z, u)|u|
dox

− Emin

Ê

)
, (3j)

γ0(z, u) = γ0σ(u) + γr[1− σ(u)]− β
[z
ẑ

]α
, (3k)

where ẑ = ḡ/gmax. Weighting the field local enhancement
with the step function σ(·) ensures that the internal state z
representing the gap distance only changes when the electri-
cal field within the dielectric layer exceeds some threshold
value Emin. Here, we have normalized the argument of the
step function by the constant Ê. Moreover, the field local
enhancement variable is now allowed to be different during the
set and reset process, as can be verified from the definition of
γ0(z, u). The variables γ0 and γr denote the values of the field
local enhancement variable during the set and reset process,
respectively.

Now, we would like to briefly sketch the fitting methodology
for the suggested model. Essentially, the fitting procedure
is the same described in [12]. We suggest to start fitting
the parameters for the lowest possible gate voltage, which
corresponds to the lowest resistance state (LRS1), such that
both the set and reset process fit the device’s behavior. Here,
we recommend using a constant velocity v0, but a variable
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field local enhancement variable γ0(z, u), just like in (3j).
Once the optimal fitting parameters are found, one should
then introduce a variable velocity parameter (3h) and fit the
parameters ζ, ug,0, and Û .

Basically, the changes introduced to the baseline Stanford-
PKU model allow for dealing with the asymmetry of the mem-
ristive switching. The latter is especially noticeable in mul-
tilevel RRAM devices (with multiple low resistance states),
which require a higher reset voltage, when their LRS is set
to be smaller by the applied gate voltage. We would like to
stress that the gate voltage should not be changed during the
reset process, which is something that is usually applied in
practice to minimize the resistance of the NMOS transistor
[13]. This is because our model changes the velocity parameter
in dependency of the gate voltage that is applied during the set
process. If the gate voltage is changed during the reset process
then the model forgets this information due to the static
relation between v0 and ug in (3h), which would make the part
of the hysteresis corresponding to the reset process to deviate
from real measurements. The only way to remember the
initially applied gate voltages would be by introducing another
differential equation (i.e. a form of memory). However, this
would convolute the model, which is why we prefer to avoid
it.

IV. WAVE DIGITAL EMULATION

HfO2-based RRAM devices are generally inexpensive
CMOS-compatible devices [13] making them quite attrac-
tive for neuromorphic technology [3]–[5]. In this context,
their bipolar switching behavior can be especially useful
for implementing synaptic learning [26], for example, by
the mechanism of Spike-Timing-Dependent-Plasticity (STDP)
[27]. However, the stochastic nature of these devices leads
to noticeable behavioral variability, which can hinder pre-
investigations of large circuits including them. For that reason,
it can be beneficial to exploit mathematical models, like the
one presented here, which can be embedded into different
simulation environments. While simulations can indeed be
quite useful for pre-investigating memristive circuits, their
efficiency usually decreases as the number of memristor
increases [28]. Therefore, we suggest exploiting the wave
digital concept [18], which is a very powerful platform-
independent tool for emulating the behavior of large electri-
cal circuits. This statement is supported by the concept of
multidimensional wave digital algorithms [16], which allows
emulating many electrical components (even with different
parameters) in a highly parallel fashion. For example, many
wave digital algorithms have been proposed for mermristive
circuits on graphs [29], one-port or two-port coupling networks
(crossbars) [30], [31], and diffusively coupled oscillators (re-
sistive or memristive) [19], [32]. Lastly, a major advantage
of the suggested concept is its real-time capability, which
allows implementing the associated algorithms on Application-
Specific-Integrated-Circuits (ASICs) or Field-Programmable-
Gate-Arrays (FPGAs) and using these devices to replace the
actual memristors within the circuit. This allows the designer
to let the considered circuits undergo experimental tests prior
to their production.

e(t)

R0

Q̂f(z, u, ug)

W (z, u)

i(t)

u(t)

Ĉ

Q̂ż(t)

Ûz(t)

Fig. 2: Emulation scenario, where the bottom circuit represents
a circuit-theoretical method of calculating the internal state.
The constants Ĉ = 1F and Q̂ = 1C are normalization
constants with the unit of capacitance and charge, respectively.

To obtain a wave digital algorithm, one must transform a
given reference circuit into a discrete model, a so-called wave
flow diagram. This transformation preserves the energetic
properties of the reference circuit, which, in particular, implies
that passivity is carried over to the discrete model [17]. An-
other benefit, among many others, is the ability of parametric
changes during runtime. This has allowed us to apply a live
parameter fitting to obtain a suitable set of parameters for
the considered device, cf. [33]. Now, transforming a given
reference circuit into the wave digital domain means that
the circuit must first be port-wise decomposed, where the
following bijective mapping relation is applied to the resulting
one- and multiports:

a = u+Ri and b = u−Ri , with R > 0 . (4)

Here, a and b denote the incident and reflected wave, re-
spectively, while R is the so-called port resistance [18].
Reactive elements, such as capacitors or inductors, must first
be discretized by means of numerical integration, commonly
the trapezoidal rule [17], [18]. To test the enhanced model, we

e(tk)

2R̂Q̂f(z(tk), u(tk), ug)

ϱ(z, u)R0

ae(tk)

be(tk)

R0

TR̂̂R

1/2

Ûz(tk)

Fig. 3: Wave flow diagram corresponding to the scenario
depicted in Fig. 2.

consider the emulation scenario depicted in Fig. 2. Here, we
interconnect a real voltage source with the internal resistance
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u

z

ug

e

ϱ(z, u)

Tτ

ae

be
τ

1/2
f(z, u, ug)

T

W (z, u)

T
1/2

Fig. 4: Explicit wave flow diagram corresponding to the scenario depicted in Fig. 2 that deals with the numerical integration
of the internal state as well as algebraic loops.

R0 directly to the RRAM device, which is represented by the
memristor with the memductance W (z, u). The lower part of
Fig. 2 demonstrates an electrical interpretation of an integrator,
which is used to integrate the right handside of the state
equation (3f). Considering the numerical discretization, which
the circuit must undergo to obtain the associated wave digital
model, we introduce a discrete time instant tk = t0+kT , with
k ∈ N, reference time t0, and sampling period T . The wave
digital model corresponding to the considered test circuit is
presented in Fig. 3. Here, the upper part results from the direct
translation of the upper circuit in Fig. 2, i.e. the voltage source
translates to a wave source supplying the voltage wave ae = e,
while the memristor translates to the reflection coefficient
ϱ(z, u). The lower part represents the numerical integration
of the state equation by the trapezoidal rule,

Ûz(tk) = Ûz(tk−1) + R̂Q̂ . . .

[f(z(tk), u(tk), ug) + f(z(tk−1), u(tk−1), ug)] , (5)

where 2R = T/C. At first glance, the algorithm seems quite
straightforward. However, one must consider the algebraic
loops that arise due to the implicitness of the reflected wave
be:

be = ϱ(z, u)ae , with (6a)

ϱ(z, u) =
1−W (z, u)R0

1 +W (z, u)R0
, u =

ae + be
2

. (6b)

As can be seen be depends on itself due to the dependency
of the memductance W (z, u) on the voltage u. In the context
of wave digital structures, this type of implicit relationship
is usually referred to as an algebraic directed delay-free loop
[34].

To resolve this loop, we make use of a fixed-point iteration,
which corresponds to the strategic insertion of an additional
delay in the wave flow diagram. A semi-explicit representation
of the wave digital algorithm including the additional delay
(designated with τ ) is presented in Fig. 4. The representation
is only semi-explicit, because it does not cover the calculation
of the device temperature T and the field local enhancement
variable γ, but rather summarizes their calculation into the
block computing the right handside of the state equation. For

more details on the evaluation of wave digital structures with
fixed-point iterators, we refer the interested reader to [34].

V. EMULATION RESULTS AND DISCUSSION

The previously discussed wave digital model of Fig. 4 is
now used to emulate the behavior of IHP’s RRAM device,
cf. [13]. Here, we used the parameters presented in [13] as a
starting point towards finding new parameters for our enhanced
model. The resulting set of parameters is given in table I. In

0 1 2 3 4 5
−1.5

0

1.5

t in s

e(
t)

in
V

Fig. 5: Input signal e(t) of the circuit in Fig. 2.

both the emulation scenario and the experiments, we applied
a voltage sweep using the triangular-shaped input depicted in
Fig. 5. Furthermore, all memristors were initialized with the
initial state z = 1 corresponding to the high resistance state
(HRS).

Our emulation results are depicted in Fig. 6. The left column
presents results with the enhanced RRAM model, while the
right column presents results with the baseline Stanford-PKU
model using the parameters given in [13]. In every plot,
we have drawn the (i, u)-curves stemming from 10 device
measurement, the average of these measurements, and the
(i, u)-curve of the new model. As can be seen from the
left part of Fig. 6, the (i, u)-curves of the new model show
an astounding resemblance to those of the real device. In
particular, we would like to draw the reader’s attention to the
similarities in the reset process, which previously was a large
discrepancy that has been pointed out in a previous work [13].
Here, we see that the model accurately captures the shift in
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Physical Parameters

Ea = 0.6 eV e = 1 eV kB = 1.38 · 10−23 J/K da = 0.25 nm T0 = 298K

Device Parameters

W = 150 nm L = 130 nm dth = 0.35 nm Eth = 25
13

V/m
Rth = 1500Ω dox = 6nm Emin = 1.4GV/m gmax = 1.8 nm

Fitting Parameters

U0 = 0.45V uth = 0.31V ug,0 = 1V α = 2.9 I0 = 1mA ḡ = 1nm g0 = 0.285 nm

β = 4.25 v0 = 0.01m/s γ0 = 40 γr = 26 ζ = 70 Û = 0.2V Ê = 1V/m

TABLE I: Physical, device, and fitting parameters of the modeled HfO2-based RRAM device.

the device’s reset voltage for different gate voltages. Large
deviations between the enhanced model and the actual device
can be observed for higher voltages after the set process. This
is because we have not modeled the series resistance of the
NMOS-transistor, which dominates the behavior of the device,
once the memristor switches to a LRS. Essentially, the NMOS
acts as a current limiter setting the compliance current. To
model its effect, one could add a nonlinear resistor in series
with the memristor, which describes the effective resistance of
the NMOS in dependency of the gate voltage and the voltage
across the device, see [25].

Now, looking at the right column of Fig. 6, we see that
simulations, which are purely based on the baseline model,
result in a much different hysteresis than that of the actual
device. The same results were observed when simulating the
model with LTspice and different ODE solvers. The difference
in the width of the hysteresis is caused by the computation
of the field local enhancement variable γ, which should only
be different from zero, when the electric field exceeds the
threshold Emin. However, even when we considered the latter,
we obtained very sharp set and reset processes, which are
impractical. These results have a very simple (mathematical)
explanation: shortly before the set/reset process, the argument
of the sinh(·) function in (1a) is very large such that the
time derivative of the state variable is also very large, which
causes a rapid switching from the HRS to the LRS. For that
reason, we introduced the fitting voltage parameter uth, which
mitigates the effects of the large argument causing a smoother
transition from the HRS to the LRS. Since, the voltage offset
should always minimize the function’s argument independent
of the voltage’s polarity, we pre-multiplied the fitting voltage
with sgn(u). Finally, to obtain a more similar reset process, we
made the velocity parameter v0 dependent on the gate voltage
applied during the set process. When the applied gate voltage
is higher, the velocity parameter should become exponentially
smaller. This results in a larger reset voltage and a smoother
transition to the HRS.

VI. CONCLUSION

In this work, we have introduced an enhanced model
and a wave digital emulator for mimicking the dynamics of
multilevel capable RRAM devices. The Stanford-PKU RRAM
model served as a basis for obtaining an enhanced model

form RRAM devices. The latter was then used to derive a
platform-independent and real-time capable emulator that can
even replace the RRAM in actual circuits. Here, our goal is
to support the design of circuits including RRAM devices.
Finally, we have shown the new model to indeed be capable of
mimicking the dynamics of RRAM devices in a more accurate
manner. Contrary to the baseline model, we have shown that
both the set and reset process are now much closer to that of
the actual device. Furthermore, we extensively discussed why
some modifications to the baseline were needed, so the model
can be used on any simulation platform.

We would like to stress that the wave digital emulator is
not restricted to a single device. In fact, one could use the
proposed method to emulate a whole memristive network
by using the methods discussed in [19], [30], [32]. This
allows the efficient emulation of large memristive networks
including RRAM devices with which we hope to support the
development of aspiring computation technologies, such as
neuromorphic computing or memristive logic.
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