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Abstract 

The present work investigates the role of threading dislocation densities (TDD) in the low density regime on 

the vertical transport in Si0.06Ge0.94 heterostructures integrated on Si(001). The use of unintentionally doped 

Si0.06Ge0.94 layers enables the study of the impact of grown-in threading dislocations (TD) without interaction 

with processing-induced defects originating e.g. from dopant implantation. The studied heterolayers, while 

equal in composition, the degree of strain relaxation, and the thickness, feature three different values for the 

TDD: 3×106, 9×106 and 2×107 cm-2. Current-voltage measurements reveal that leakage currents do not scale 

linearly with TDD. The temperature dependence of the leakage currents suggests a strong contribution of 

field-enhanced carrier generation to the current transport, with the trap-assisted tunneling via TD-induced 

defect states identified as the dominant transport mechanism at room temperature. At lower temperature 

and at high electric fields, direct band-to-band tunneling without direct interaction with defect levels becomes 

the dominating type of transport. Leakage currents related to emission from mid-gap traps by the Shockley-

Read-Hall (SRH) generation is observed at higher temperatures (>100 °C). Here, we see a reduced contribution 

coming from SRH in our material, featuring the minimal TDD (3×106 cm-2), which we attribute to a reduction 

in point defect clusters trapped in the TD strain fields.  
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Germanium (Ge) and Ge-rich silicon-germanium (SiGe) alloys are gaining ever more relevance for the 
fabrication of novel devices for a variety of different applications. These include, among others, high-
performance MOSFETs [1], near-infrared integrated light sources [2], detectors [3], THz quantum cascade 
lasers [4], spintronic devices [5] and semiconductor based qubits [6]. 
All these devices need to be manufactured using CMOS-compatible processes and, consequently, they have 
to be realized on (001)-oriented silicon (Si) substrates. Owing to the large lattice mismatch between Ge and 
Si (4.2%), lattice-strain management issues has to be considered. This includes the need for a full plastic 
relaxation of some of the layers, constituting the device material in order to tailor the strain and thus the 
electron- and/or hole-energy band profiles of the active layers. For Ge-rich SiGe/Ge heterostructures, this is 
commonly achieved by realizing a reverse graded SiGe virtual substrate (RGVS) on Si in which a relaxed Ge 
buffer is first deposited on Si; in the subsequent layer the Ge content is gradually decreased to promote the 
full relaxation of the lattice by formation of misfit dislocations (MD), while minimizing the density of threading 
dislocations (TD) [7,8]. Indeed, TDs are unavoidable in hetero-epitaxial growth and extend from the defective 
heterointerface running through the entire heterostructure, all the way up to the free surface of the crystal. 
Consequently, TDs can have a significant impact on the device performance. It is then of paramount 
importance to clarify the conduction mechanisms through TDs and gain an in-depth understanding of the 
electrical activity of TDs to provide a solid basis for device simulation and improved designs.  

Early studies on the electrical activity of extended defects have been performed on plastically deformed high 

purity Ge bulk crystals. These studies pointed to the formation of TD-related one-dimensional (1D) bands of 

shallow states, which split off from the valence and conduction band, most likely related to stress fields 

associated with dislocations [9,10]. In case of Ge(Si) layers integrated on Si substrates, a network of 

dislocations forms at the Ge/Si heterointerface impacting the junction leakage current and generation-

recombination properties [11]. Reported leakage currents in p-n junctions depend on the Ge content and 

increase proportionally with the amount of TDD [11,12], but the leakage current becomes independent of the 

TDD below ~107 cm-2 [13]. A post-deposition thermal anneal leads to a reduction in leakage current, that 

cannot be explained by the reduction of TDs, but is rather associated to a removal of point defect clusters in 

the material [12]. Previous investigations were carried out on devices featuring TDDs in the range of 107 - 1010 

cm-2 [11,13,14] and the variation of TDD was limited to a post-growth anneal.  

Device physics as well as device design requirements push towards a further reduction in TDD, making it 

crucial to obtain a quantitative understanding of the impact of TDs on device performance particularly in the 

low density regime of 105 – 107 cm-2 TDs.  

Here we present a comprehensive analysis of the influence of the grown-in TDD on the vertical transport 

mechanisms in as-grown intrinsic Si0.06Ge0.94/Ge/Si heterostructures featuring the same thickness and degree 

of plastic relaxation without introducing implantation-induced defects [15]. We conveniently use  these Ge-

rich SiGe RGVS because of the recent demonstrated capability to tune their TDD down to the low 106 cm-2 

range, thanks to the presence of the Si0.06Ge0.94/Ge heterointerface [16]. Furthermore, this composition range 

is of special interest for applications using superlattice structures due to the requirement of strain-

symmetrization between quantum-wells and tunnel barriers [17]. To study the influence of TDs on the vertical 

transport, we have realized 3D mesa diodes featuring a buried n+-p homojunction close to the relaxed SiGe/Ge 

heterointerface by phosphorus (P) co-doping for the n-type side and exploiting the p-type nature of the defect 

states in the nominally intrinsic SiGe layer. Our goal is to investigate how the TDD correlates with leakage 

currents in the formed junctions and differentiate the dominating transport mechanisms by investigating the 
leakage behavior at different temperatures. 

The analyzed Ge-rich SiGe heterostructures were grown on 200 mm diameter Si(001) wafers in a commercial 

ASM Epsilon 2000 reduced pressure chemical vapor deposition reactor at a pressure of 80 Torr. After wet 

chemical cleaning of the substrate and a prebake in a hydrogen (H2) atmosphere in order to remove the native 



 

 
 

oxide, a 100 nm-thick seed Ge layer was grown at 350 °C using a germane-nitrogen gas mixture. After the 

seed layer formation, variable thickness and fully relaxed Ge buffer of 4.5 µm, 2.3 µm and 1.2 µm were grown 

at a temperature of 550 °C. On top of the Ge/Si heterostructure, a 150 nm thick highly P-doped Si0.06Ge0.94 

layer (1×1019 cm-3) was deposited using silane and germane as reactant gas and phosphine as dopant gas. 

Finally, an intrinsic 1.2 µm thick Si0.06Ge0.94 layer was deposited at 550 °C. More details on the deposition 

process can be found in Ref. [16] .  

The three Si0.06Ge0.94 epilayers feature the same thickness and degree of relaxation (R= 106% [16]) but 

different TDD values of 3×106 (sample SA), 9×106 (SB) and 2×107 cm-2 (SC) as measured by the Secco etch pit 

count over a surface area of 55 µm2. The surface of SC after etching is displayed in Fig.1 (a). The different TDD 

values were obtained relying on the procedure introduced in Ref. [16], i.e. by tuning the Ge buffer thickness.  

Related transmission electron microscopy (TEM) images can be found in Ref. [16]. Secondary ion mass 

spectroscopy (SIMS) results show that dopants (P, B) are below the detection limits in the intrinsic region of 

3x1016 at/cm³ and 1x1017 at/cm³ for phosphorus and boron, respectively. The used process conditions 

resulted in diffusion lengths of P towards the surface of less than 5 nm/decade, allowing sharp buried 

homojunctions. Vertical mesa diode devices were fabricated out of the heterostructures as shown in Fig.1 (b). 

A 50 nm nickel (Ni) layer as a top metal contact was deposited on top of the intrinsic Si0.06Ge0.94 layers for 

defining the diode area. Subsequently, the remaining SiGe material was etched by inductively coupled plasma 

(ICP) mesa-etching [18]. Ohmic contacts with an average contact resistance over all devices of 30 Ω were 

formed on the n+-Si0.06Ge0.94 layer using deposited Ni metal annealed at 330 °C for 30 s to form NiGe [19]. Ti-

Al was deposited on top of the NiGe contacts to form bond pads. The size of the diodes was varied ranging 

from 250 µm to 1000 µm in diameter for separation of geometrical current components. Current-voltage (I-

V) and capacitance-voltage (C-V) measurements were performed in a low-vacuum PMV200 probe station 

connected with a Keithley 4200A-SCS parameter analyzer. The temperature-dependent I-V characteristics 

were obtained at temperatures from 210 K to 475K. In all measurements, the NiGe bottom contact was 
connected to the ground (V=0V).  

The diode we investigate in the following is the buried n+-p junction formed between the highly n-doped and 

the nominally intrinsic Si0.06Ge0.94 layers (see Fig. 1 (b)). In fact, the intrinsic region behaves as lightly p-type 

doped, which has been verified by lateral Hall effect measurements, pointing to a p-type conductivity of the 

studied intrinsic material, featuring an effective hole density (averaged over the intrinsic region) in the 1015-

1016 cm-3 range (data not shown). Our observation is in agreement with previously published results on Ge-

rich SiGe layers [20,21], GeSn films grown on Ge substrates [22], and  plastically deformed Ge bulk material 

[23]. Nonetheless, the origin of this p-type conduction of the intrinsic Ge-based material is currently under 

discussion in literature, and is generally attributed to acceptor-like defect states caused by plastic 

deformation and/or strain relaxation [20,23].  

As a consequence our devices behave like n+-p junctions with the depletion region predominantly extending 

into the i-Si0.06Ge0.94 epilayer. As such, we can probe the vertical transport along the TD direction avoiding any 

possible interactions with dopant atoms. 

In Fig.1 (c) we show the current density-voltage (J-V) characteristics at 25 °C of the three representative 

devices with identical geometries and mesa diameters of 250 µm, classified by their TDD. After correcting the 

data for the series resistance (RS), the forward characteristics of the diodes is similar having ideality factors 

averaged over all diode sizes of 1.17, 1.23 and 1.43 for samples SA, SB and SC, respectively. In contrast, in the 

reverse bias regime (VR) we observe an increase of more than 2 orders of magnitude in current density for an 
increase in TDD of one order of magnitude.  



 

 
 

 
Fig. 1: (a) A scanning electron microscopic image of etch pits after 15 minutes of Secco etching, 

(b) a sketch of the devices fabricated on Ge-rich SiGe material, the dashed line display the 
investigated homojunction and (c) comparison of J-V characteristics of n+-p homojunctions. 

 

We can write the leakage currents (Ileak) as the sum of the contributing leakage current densities occurring at 
the perimeter P of the diode (JP) and across the area A (JA), as  

𝐼𝑙𝑒𝑎𝑘 = 𝐴 × 𝐽𝐴 +𝑃 × 𝐽𝑃 .                                                   (1) 

By measurements carried out on diodes featuring different perimeter to area P/A ratios, we can separate JA 

and JP using a linear fit of Ileak/A versus P/A at certain reverse voltages [24]. The comparison of JA and JP for 

the samples SA, SB and SC is reported in Fig.2 (a). We first notice that JP is almost identical for the three 

samples featuring different TDDs, witnessing a high reproducibility of the fabrication process. In contrast,  JA 

shows a clear dependence on the TDD [25,26]. Indeed, we observe a super-linear relationship JA TDD [27], 

with (VR) values always greater than 1 (see Fig.2 (b)). This is different from what is observed in low-Ge 

content Si1-xGex layers (x< 0.3), where a linear relation between leakage currents and TDD has been reported 

[26]. The increase of  with higher VR suggests an electric field dependence of the carrier generation, as we 

will discuss in the following. Like in Ge, the rather small bandgap of our Si0.06Ge0.94 layers (E(Lc)-E(v)=0.7 eV 

at 300 K) can enhance tunnel processes of carriers through the bandgap in presence of a strong electric field 

[28]. 

According to the Shockley-Read-Hall (SRH) theory [29,30], the reverse current of an abrupt one-sided n+-p 

junction comprises a diffusion current (Jdiff) and a generation current (Jgen) contribution [31,32], which can be 

expressed as 

𝐽𝐴 = 𝐽𝑑𝑖𝑓𝑓+ 𝐽𝑔𝑒𝑛 =
𝑞𝑛𝑖

2𝐷𝑛

𝑁𝐴𝐿𝑛
+

𝑞𝑛𝑖𝑊𝐷

𝜏𝑔𝑒𝑛
  ,                                                           (2) 

where q is the elementary charge, ni is the intrinsic carrier concentration, NA is the acceptor density in the p-

type doped material, WD the depletion width, τgen the generation lifetime, and Dn and Ln are the diffusion 

coefficient and diffusion length of the electrons, respectively. Eq. (2) predicts a linear increase of JA for 

increasing WD. Instead, this increase is found to be super linear as demonstrated in Fig. 2(c), where JA is plotted 

as a function of WD (J-W plot [33]) as measured by capacitance-voltage (C-V) measurements (not shown) that 

point towards an additional contribution of field-enhanced generation mechanisms [34]. It should be noticed 

here that WD extends from the top of the n+- into the i-Si0.06Ge0.94 layer, which is only 150 nm apart from the 

SiGe/Ge heterointerface. Close to the junction interface we have measured a positive charge density of 

2x1017, 5x1017 and 7x1017 cm-3 for samples SA, SB, and SC by C-V profiling, respectively. In consequence of a 

higher NA and consequently a narrower depletion width, the electric field at the junction is increased in higher 

TDD samples, e.g. the initial maximum electric field (VR=0V) doubles from 1.5x107 V/m to 3x107 V/m in the 

range of TDDs investigated here. We notice that this narrowing of WD plays a key role in tunnel-related 



 

 
 

transport such as trap-assisted tunneling (TAT) or band-to-band (BTB) tunneling [35] as shown schematically 

in the inset of Fig. 2(c). In particular it can be responsible of an increase of the leakage current contribute 

related to the BTB tunneling with the TDD even if the BTB tunneling does not depend explicitly on defect 

levels [35]. Field-enhanced tunneling mechanisms such as TAT and BTB tunneling have been observed 

previously in Ge p-i-n photodetectors [36], p+-n Ge junctions for MOSFETs [37], strained SiGe source/drain 

junctions [38] and Ge pFET junctions [39]. 

 

 

Fig. 2: The reverse current density at 25°C depending on the TDD. Panel (a) shows the area JA and 

perimeter JP current densities versus the applied reverse bias. (b) The super l inear increase in JA 
with applied bias is illustrated by a power law that models the relation between JA and TDD. (c) The 

rise in JA with increasing WD. The inset shows a schematic picture of the discussed processes of 
carrier transport. 

In order to assess the dominant mechanism of transport along TDs in i- Si0.06Ge0.94/Ge layers, the J-V diode 

characteristics were measured at temperatures ranging from 210K to 475K. As shown in panel a-c of Fig.3, 

the temperature dependence of the leakage current diminishes strongly with the applied reverse bias, 

pointing to the action of rather weakly temperature-dependent mechanisms, such as tunneling. The leakage 

current activation energy EA, which is a product of all contributing transport mechanisms,  is estimated by 

Arrhenius plots at different VR [28]; in Fig.3 (d-f) we plot ln(JR) vs 1/kT for different reverse biases with the 

Boltzmann constant, k and substrate temperature, T. For all three samples we identify three temperature 

regimes (T > 100°C, 25°C < T < 100°C, and T < 25°C) characterized by different slopes of the semi-logarithmic 

plot. 

For temperatures above 100 °C, the calculated EA at low VR of all three samples are approximately half the 

Si0.06Ge0.94 bandgap (Eg/2 ≈ 0.35 eV), suggesting a generation via the SRH mechanism: the second term in eq. 

(2) shows a dependency of the SRH generation rate on ni and, consequently, its thermal activation energy 

corresponds to half the bandgap energy. The presence of these mid-gap traps may be related to the TDs, as 

such traps have been found in plastically deformed or heteroepitaxial n-type Ge layers, where they are 

attributed to the presence of point defect clusters trapped in the strain field of TDs [14]. Since we have not 

carried out any implantation processes in our samples, here we argue that these point defects should be 

related to growth induced defects such as vacancy complexes, which have been reported to show a strong 

recombination activity in Si when dislocations are present in the material [40,41]. It should also be noted that 

for the sample SA featuring the minimal TDD, the EA at higher T is lower than those of samples SB and SC, 

pointing towards a reduced influence of the SRH generation mechanism. This is in line with our interpretation, 

since at lower TDDs the emergence of point defect clusters in the strain field of TDs is reduced. 

At lower reverse bias (VR > -1V), we observe a decrease in EA with decreasing temperature, which indicates a 

major contribution of TAT in our material. For TAT, the SRH generation is increased by the field enhancement 



 

 
 

factor, which in turn decreases exponentially with rising temperature [28]. It has previously been argued that 

TAT becomes the dominant mechanism of leakage currents for activation energies between Eg/2 and 0.1 eV 

in Ge based junctions, which are similar to our devices [28]. In the intermediate temperature range 25°C < T 

< 100°C, EA is close to 0.1 eV in all three samples and we, thus, conclude that TAT is the dominant type of 

transport here. The tunneling via traps may become possible by the defect centers induced in our structures 

during the relaxed heteroepitaxial growth and the high electric fields present at the homojunction.   

For temperatures below 25°C, the estimated EA are far below 0.1 eV, and thus likely related to BTB tunneling 

without interaction of any defect levels this is similar to results obtained from samples with higher dislocation 

densities [28,32]. As suggested in Ref. [10], a possible local reduction of the bandgap energy due to the strain 

field around a TD may lead to an enhanced BTB tunneling.  

By operating in a high electric field regime, increased band bending results in enhanced tunneling [36]. For 

applied reverse voltages < -1.0 V, the EA of all three tested devices are below 0.1 eV suggesting BTB tunneling 

as the dominant leakage contribution probably caused by an increasing electric field present at the probed 
junction.  

 

Fig. 3: The temperature dependent J-V characteristics ranging from 210K to 475 K of studied samples (a) 

SA, (b) SB and (c) SC. Arrhenius plots of the corresponding current densities at different VR are shown in 
(d-f). The associated EA for the three defined temperature ranges are plotted versus applied reverse bias 

in (g- i).  



 

 
 

In conclusion, we produced intrinsic Si0.06Ge0.94 epitaxial layers, which are equal in composition, degree of 

relaxation and thickness but featuring different values of TDD to investigate the vertical transport along the 

grown-in TD direction in Ge-rich SiGe heterostructures integrated on Si(001). Based on the observed p-type 

conductivity of the unintentionally doped Si0.06Ge0.94 layer, a systematic study was performed on buried n+-p 

homojunctions. It has been shown that the dependence of the area leakage current on the TDD shows a 

power law dependence, whereas the perimeter leakage current do not depend on the TDD. Temperature 

dependent J-V measurements revealed that the vertical transport is dominated by SRH generation via mid-

gap traps for temperatures above 100 °C, whereas the influence of TAT increases with decreasing 

temperature becoming the dominating contribution to the leakage current at 25°C. Below 25°C and at high 

electric fields (VR < -1V), leakage currents are dominated by BTB tunneling in our material. While SRH and TAT 

are directly linked to the presence of defect states in the forbidden band probably caused by the grown-in 

TDs, is the BTB tunneling more likely related to the existing high electric fields at the studied homojunction.  

Reducing the TDD leads to a strong reduction in area leakage currents in our devices, but our investigation 

also points towards an interplay between TDs and point defect clusters as the origin of the leakage currents. 

Due to the electric field dependence of the observed tunnel processes the leakage currents depend super-

linearly on the TDD.  

For device applications, a further reduction in leakage currents would be desirable. Future experiments could 

investigate the interplay of TDs and point defect clusters further and a systematic investigating of the 

influence of annealing steps on the leakage currents can provide a way towards reducing leakage currents.   
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