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Abstract In this work, we present a dual window silicon photonic coherent receiver for O- and C-band,
fabricated in a 0.25 µm BiCMOS technology. Performance is evaluated for up to 50 GBd, while utilizing
a local oscillator power of up to 6.9 dBm.

Introduction

Traditionally, there was a clear distinction between
direct-detect data center interconnects (DCIs, O-
band) and long-haul coherent communication (C-
band). However, the potential deployment of co-
herent links in the data center domain has gained
significant interest in recent years. The border be-
tween coherent and direct-detect systems is sub-
ject of intense debate. Shorter coherent links may
even benefit from O-band coherent photonics[1],
further blurring the divide between O- and C-band
communication. Recently, broadband optical con-
version from C- to O-band by nonlinear four-
wave mixing in multi-mode silicon waveguides[2],
and very high-speed hybrid lithium niobate/silicon
modulator for C- to O-band[3] were demonstrated,
rendering the entire wavelength range between
O- and C-band transparent to coherent formats.
Considering the convergence of coherent com-
munication across optical bands spanning more
than 200 nm, cost-efficient ultra-wideband high-
speed coherent receivers may become a neces-
sity.
In this work, we will present the first monolithic
silicon photonic BiCMOS dual window coherent
receiver, fabricated in IHP’s 0.25 µm photonic
BiCMOS technology. In contrast to the work in
Ref. [4], the demonstrated receiver in this work
monolithically co-integrates an electronic ampli-
fier stage and is characterized at up to 50 GBd.
The receivers features a 2 × 2 MMI network as
90◦ hybrid with a central wavelength of 1430 nm.
In principle, the receiver can be used in the E- and
S-band as well, since these are closer to the MMI
network’s central wavelength.
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Fig. 1: 2 × 2 MMI coupler network used for the coherent
receiver. MMI: multi-mode interference coupler, PS: phase

shifter, PD: photodiode.

O/C-Band Coherent Receiver

A schematic of the optical circuit is shown in Fig.
1. Optical coupling is achieved by focusing 1-
dimensional grating coupler. The choice of grat-
ing coupler for this prototype was done given their
reliability, and the possibility of on-wafer testing.
However, in a future iteration, broadband optical
interfaces suitable for O- and C-band, i.e. spot-
size converter, should be implemented. The ad-
ditional integration of polarization-rotator splitter
would also enable dual polarization applications.
While in dedicated O- or C-band coherent re-
ceivers, 4 × 4 MMI coupler may be used as 90◦

hybrid[5], the imbalance and phase error quickly
rise to impractical levels when deviating too far
from the design wavelength. Therefore, the hybrid
is realized using a 2 × 2 MMI network[6],[7], which
offers a larger optical bandwidth in comparison
to 4 × 4 MMIs[8]. However, an additional phase
shift of 90◦ is required for a proper separation
of in-phase and quadrature component. Here,
this phase shift is controlled using metal heaters
placed above the silicon waveguides. The sim-
ulated performance for one of the 2 × 2 MMIs
is given in Fig. 2. From O- to C-band, the im-
balance between the two output ports is at worst
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Fig. 2: Simulated MMI performance. The phase error is
expressed as the difference in phase at one output when
using either input port 1 or 2 relative to the ideal phase

difference of 90◦.

Fig. 3: Electrical section of the coherent receiver. The circuit
is shown only for one channel, whereas an identical circuit is
used for the second channel. OA: operational amplifier, TIA:
transimpedance amplifier, TIAR: Replica TIA, VGA: variable
gain amplifier, TL: transmission line, VPD: photodiode bias

voltage.

1 dB. The phase error is expressed as the dif-
ference in phase at one output when using ei-
ther input port 1 or 2 relative to the ideal phase
difference of 90◦. At 1310 nm and 1550 nm,
the error is approximately 10◦. The optical net-
work is terminated by single-ended photodiodes.
The electrical circuit (per channel) is shown in
Fig. 3. It consists of an input stage, two vari-
able gain amplifiers (VGAs) and a 50 Ω output
buffer. It features a DC cancellation loop and a
manual- and automatic gain control. Further in-
formation on the circuit topology may be found in
Ref. [9]. The total power consumption for the elec-
trical circuit is approximately 449 mW. The addi-
tional power consumption for the metal heater re-
quired for the 90◦ phase shift is typically below
10 mW. The chip area of the coherent receiver is
approximately 6 mm2. The opto-electrical band-
width was determined on a dedicated O-band co-
herent receiver with an identical electrical circuit
on the same wafer. A measured normalized re-
sponse is shown in Fig. 4, indicating a 3 dB band-
width of approximately 30 GHz. The bandwidth
was measured using the beating of two external-
cavity laser (ECL) and a RF power meter.
The system performance of the receiver is ver-
ified in an intradyne back-to-back experiment,
with the setup shown in Fig. 5. A dedicated

Fig. 4: Opto-electrical bandwidth of a dedicated O-band
coherent receiver with an identical electrical circuit on the

same wafer.

Fig. 5: Intradyne measurement setup with integrated
O/C-band coherent receiver. A QPSK signal is applied using

a commercial C-band IQ-modulator (IQ Mod). The top left
inset shows the electrical eye diagram supplied by the AWG
at 50 GBd, and a chip photograph is shown in the top right.
PC: polarization controller, OSA: optical spectrum analyzer,
PDFA: praseodymium-doped fiber amplifier, OBPF: optical

bandpass filter (1 nm).

C-band IQ-modulator with an integrated C-band
laser (ID Photonics OMFT, 1545 nm) is supplied
with a 400 mVPP quadrature-phase shift-keying
(QPSK) signal from an arbitrary waveform gener-
ator (AWG, Keysight M8199A, 256 GSa/s). An
electrical eye diagram at 50 GBd is shown as
inset in the top left in Fig. 5. The optical
signal is then attenuated using a variable opti-
cal attenuator (VOA, Keysight N7752A) to vary
the received optical power (ROP) during the ex-
periment. Single-ended electrical signals from
the receiver are connected to two real-time os-
cilloscopes (Tektronix DPO77002SX, 200 GSa/s,
40 GHz 3 dB bandwidth). During the O-band
measurement, a separate ECL (1310 nm) is pre-
amplified to partially compensate for the laser’s
lower output power and the higher losses of the C-
band IQ modulator. Tektronix optical modulation
analyzer software (OM1106D) is used for offline
digital signal processing (DSP) and bit error rate
(BER) measurements. The local oscillator (LO)
power for the O- and C-band measurement is
6.5 dBm and 6.9 dBm, respectively. Determined
BERs for varied ROPs are given in Fig. 6. For the
O-band, symbol rates of 32 GBd, 40 GBd, and
50 GBd are measured. The performance of the
receiver in the C-band is also verfied by a 50 GBd
QPSK measurement. Exemplary eye- and con-
stellation diagrams are also shown in Fig. 7.



Fig. 6: BER versus ROP for different symbol rates in the
O-band. Performance in the C-band is verified by a

measurement at 50 GBd. The LO power for the O- and
C-band measurement is 6.5 dBm and 6.9 dBm, respectively.

Discussion

The BERs in Fig. 6 show a similar performance
for 32 GBd and 40 GBd in the O-band, with a
penalty of around 1 dB. An increased penalty of
approximately 3.5 dB can be found between the
40 GBd and 50 GBd transmission. Note, that
a comparatively low LO power of +6.5 dBm is
used in this experiment, which is advantageous
in an intra DCI environment, where power con-
sumption is a prime resource. Nonetheless, fur-
ther improvements can be expected by a higher
LO power, as well as a dedicated O-band IQ
modulator. Due to the C-band IQ-modulator, a
6 dB stronger signal is available in the C-band at
50 GBd. While the performance is very similar
to the O-band experiment despite that, it needs
to be noted that the photo current for the C-band
is also only about a quarter of the current in the
O-band. This deviation can be attributed to two
key factors. The fiber array used in this exper-
iment is aligned to favor the O-band, since the
data link at 1310 nm already suffers from a degra-
dation due to the C-band IQ-modulator. Addition-
ally, process variations can affect O- and C-band
performance as well, e.g. due to differences in the
photodiode responsivity. Presently, this difference
could be compensated using a stronger local os-
cillator. Given the deployment of C-band coher-
ent links in the long-haul domain, the additional
power consumption for this increase is even more
feasible than in the O-band. An unresolved issue
are contact instabilities due to the large number
of pads which need to be probed during the ex-
periment, which shall be improved in the future
by a packaged solution. Despite these temporary
issues, the receiver demonstrates promising per-
formance in the O- and C-band, thus potentially
enabling coherent communication over more than
200 nm bandwidth.

Fig. 7: (a) Recovered eye diagram and (b) constellation at
32 GBd in the O-band (ROP = -9 dBm). The eye diagram has

been interpolated. 50 GBd constellation in the (c) O-band
(ROP = -10 dBm) and (d) C-band (ROP = -3.9 dBm).

Conclusions
The O- and C-band coherent receiver demon-
strated in this work has been characterized at up
to 50 GBd. At 40 GBd, the receiver shows 6.5 dB
power budget for a ROP of -9 dBm. This trans-
lates to the loss of approximately 20 km stan-
dard single mode fiber at 1310 nm. The devia-
tion towards higher symbol rates in the C-band
can be attributed to setup- and process variations,
e.g. the coupling efficiency and photodiode re-
sponsivity. We therefore expect to approach state
of the art performance of dedicated C-band co-
herent receiver for a higher LO power and im-
proved packaging solution, i.e. contacting and
optical interface. While respective optical sources
were presently unavailable, the receiver could in
principal be used in the E- and S-band as well,
since these are closer to the MMI network’s cen-
tral wavelength of 1430 nm.
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Mai, C. Schubert, N. Hanik, L. Zimmermann, R. Fre-
und, and K. Petermann, “Efficient Ultra-Broadband C-
to-O Band Converter Based on Multi-Mode Silicon-on-



Insulator Waveguides”, in 2021 Eur. Conf. Opt. Commun.
(ECOC), We1G.1, Bordeaux, France, 2021.

[3] S. Sun, M. He, M. Xu, S. Gao, S. Yu, and X. Cai, “Hybrid
silicon and lithium niobate modulator”, IEEE Journal of
Selected Topics in Quantum Electronics, vol. 27, no. 3,
pp. 1–12, May 2021.

[4] C. Doerr, L. Chen, T. Nielsen, R. Aroca, L. Chen, M.
Banaee, S. Azemati, G. McBrien, S. Y. Park, J. Geyer,
B. Guan, B. Mikkelsen, C. Rasmussen, M. Givehchi, Z.
Wang, B. Potsaid, H. C. Lee, E. Swanson, and J. G. Fuji-
moto, “O, E, S, C, and L band silicon photonics coherent
modulator/receiver”, in Opt. Fiber Commun. Conf. Exhib.
(OFC), OSA, 2016.

[5] P. M. Seiler, A. Peczek, G. Winzer, K. Voigt, S. Lis-
chke, A. Fatemi, and L. Zimmermann, “56 GBaud O-
Band Transmission using a Photonic BiCMOS Coherent
Receiver”, in 2020 Eur. Conf. Opt. Commun. (ECOC),
2020, pp. 1–4.

[6] R. Kunkel, H.-G. Bach, D. Hoffmann, C. Weinert, I.
Molina-Fernandez, and R. Halir, “First monolithic InP-
based 90◦-hybrid OEIC comprising balanced detectors
for 100GE coherent frontends”, in 2009 IEEE Intl. Conf.
Indium Phosphide Relat. Mater., IEEE, May 2009.

[7] Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida,
and H. Takahashi, “Reduction of phase-difference devi-
ation in 90◦ optical hybrid over wide wavelength range”,
IEICE Electronics Express, vol. 7, no. 3, pp. 216–221,
2010.

[8] K. Voigt, L. Zimmermann, G. Winzer, and K. Petermann,
“SOI based 2 × 2 and 4 × 4 waveguide couplers - evo-
lution from DPSK to DQPSK”, in 2008 5th IEEE Interna-
tional Conference on Group IV Photonics, IEEE, 2008.

[9] A. Awny, R. Nagulapalli, M. Kroh, J. Hoffmann, P. Runge,
D. Micusik, G. Fischer, A. C. Ulusoy, M. Ko, and D.
Kissinger, “A linear differential transimpedance ampli-
fier for 100-Gb/s integrated coherent optical fiber re-
ceivers”, IEEE Trans. Microw. Theory Tech., vol. 66,
no. 2, pp. 973–986, Feb. 2018.


	Introduction
	O/C-Band Coherent Receiver
	Discussion
	Conclusions
	Acknowledgements

