Script list Publications
(1) Variability in HfO2-based Memristors Described with a New Bidimensional Statistical Technique
C. Acal, D. Maldonado, A. Cantudo, M.B. González, F. Jiménez-Molinos, F. Campabadal, J.B. Roldán
Nanoscale 16(22), 10812 (2024)
DOI: 10.1039/D4NR01237B
A new statistical analysis is presented to assess cycle-to-cycle variability in resistive memories. This method employs two-dimensional (2D) distributions of parameters to analyse both set and reset voltages and currents, coupled with a 2D coefficient of variation (CV). This 2D methodology significantly enhances the analysis, providing a more thorough and comprehensive understanding of the data compared to conventional one-dimensional methods. Resistive switching (RS) data from two different technologies based on hafnium oxide are used in the variability study. The 2D CV allows a more compact assessment of technology suitability for applications such as non-volatile memories, neuromorphic computing and random number generation circuits.
(2) Advanced Recovery and Enhanced Humidity Tolerance of CNTs Gas Sensor using a Filament Heater
I. Ahmad, D. Lee, M. Chae, H.-D. Kim
Chemical Engineering Journal 496, 154014 (2024)
DOI: 10.1016/j.cej.2024.154014
Carbon nanotubes (CNTs) gas sensors have slow recovery times and are susceptible to dampness, impacting their responsiveness. Different energy sources, like heaters, have been utilized to tackle this problem, but they are high in energy consumption and have size limitations. This study introduces a conductive filament-based heater (CFH) designed to enhance the recovery time and humidity tolerance of CNTs gas sensors, which is simply configured perpendicular to the CNTs gas sensor. As a result, when using CFH, we observed that after a gas sensing, it returns to its initial state within 1 ms, which is 35x105 times faster a recovery speed than that of without a heater, and only 475 nJ of energy was consumed for recovery. In addition, in the evaluation of humidity on the CFH-embedded CNTs gas sensor, the humidity had the least effect on the sensor using a CFH with heating voltage of 0.7 V ranged from 0.2 to 0.7 V, which was caused by the highest temperature and lowest absorption rate of water molecules on the surface of CNTs. The results suggest that the proposed CFH is an adaptable technique that can be used with various gas sensors including CNTs gas sensors that need an additional energy source.
(3) Advances in MXene-based Synaptic Devices and Sensors: Review
M. Ali, D. Lee, M. Chae, I. Ahmad, H.-D. Kim
Materials Today Physics 45, 101456 (2024)
DOI: 10.1016/j.mtphys.2024.101456
This paper reviews the research on MXene, a two-dimensional material that has the potential to be used in next-generation electronic devices. Due to its unique electrical, mechanical, and surface properties, MXene has emerged as a promising candidate for the development of memristor devices and gas sensors. The paper provides an extensive overview of the state-of-the-art in MXene-based memristors and gas sensors, covering topics such as synthesis techniques, intrinsic properties, and a wide range of potential applications. In particular, the tunability of MXene and its ability to modify its electrical properties through surface functionalization are emphasized, allowing for precise control over device performance.
(4) Adhesive-Free Bonding for Hetero-Integration of InP based Coupons Micro-Transfer Printed on SiO2 into Complementary Metal-Oxide-Semiconductor Backend for Si Photonics Application on 8” Wafer Platform
K. Anand, P. Steglich, J. Kreissl, C.A. Chavarin, D. Spirito, M. Franck, G. Lecci, I. Costina, N. Herfurth, J. Katzer, Ch. Mai, A. Becker, J.P. Reithmaier, L. Zimmermann, A. Mai
Thin Solid Films 799, 140399 (2024)
DOI: 10.1016/j.tsf.2024.140399, (FMD)
Micro-Transfer printing (µTP) is a promising technique for hetero-integration of III-V materials into Si-based photonic platforms. To enhance the print yield by increasing the adhesion between the III-V material and Si or SiO2 surface, an adhesion promoter like Benzocyclobutene is typically used as interlayer. In this work, we demonstrate µTP of InP based coupons on SiO2 interlayer without any adhesive interlayer and investigate the mechanism of adhesive free bonding. Source coupons are InP-based coupon stacks on a sacrificial layer that is removed by a chemical wet etch with FeCl3. For the target we fabricated amorphous-Si waveguides on 8" wafer encapsulated by a High Density Plasma SiO2 which was planarized by a chemical mechanical polishing procedure. We used O2 plasma to activate both source and target to increase adhesion between coupon and substrate. To get a better understanding of the bonding mechanism we applied several surface characterization methods. Root mean square roughness of InP and SiO2 was measured by atomic force microscopy before and after plasma activation. The step height of the micro-transfer printed source coupon on the target wafer is estimated by optical step profiler. We used Raman peak position mappings of InP to analyze possible strain and contact angle measurements on SiO2, before and after plasma activation to observe a change in the hydrophilicity of the surface. X-ray Photoelectron Spectroscopy analysis was used to characterize the surface energy states of P2p, In3d, O1s for InP source and Si2p, O1s for SiO2 target. Our results demonstrate direct bonding of InP coupons by means of µTP without the need of a strain-compensation layer. In this way, a promising route towards Complementary Metal-Oxide-Semiconductor compatible use of µTP for the hetero-integration of InP is provided.
(5) Adhesive-Free Bonding for Hetero-Integration of InP based Coupons Micro-Transfer Printed on SiO2 into Complementary Metal-Oxide-Semiconductor Backend for Si Photonics Application on 8” Wafer Platform
K. Anand, P. Steglich, J. Kreissl, C.A. Chavarin, D. Spirito, M. Franck, G. Lecci, I. Costina, N. Herfurth, J. Katzer, Ch. Mai, A. Becker, J.P. Reithmaier, L. Zimmermann, A. Mai
Thin Solid Films 799, 140399 (2024)
DOI: 10.1016/j.tsf.2024.140399, (PEARLS)
Micro-Transfer printing (µTP) is a promising technique for hetero-integration of III-V materials into Si-based photonic platforms. To enhance the print yield by increasing the adhesion between the III-V material and Si or SiO2 surface, an adhesion promoter like Benzocyclobutene is typically used as interlayer. In this work, we demonstrate µTP of InP based coupons on SiO2 interlayer without any adhesive interlayer and investigate the mechanism of adhesive free bonding. Source coupons are InP-based coupon stacks on a sacrificial layer that is removed by a chemical wet etch with FeCl3. For the target we fabricated amorphous-Si waveguides on 8" wafer encapsulated by a High Density Plasma SiO2 which was planarized by a chemical mechanical polishing procedure. We used O2 plasma to activate both source and target to increase adhesion between coupon and substrate. To get a better understanding of the bonding mechanism we applied several surface characterization methods. Root mean square roughness of InP and SiO2 was measured by atomic force microscopy before and after plasma activation. The step height of the micro-transfer printed source coupon on the target wafer is estimated by optical step profiler. We used Raman peak position mappings of InP to analyze possible strain and contact angle measurements on SiO2, before and after plasma activation to observe a change in the hydrophilicity of the surface. X-ray Photoelectron Spectroscopy analysis was used to characterize the surface energy states of P2p, In3d, O1s for InP source and Si2p, O1s for SiO2 target. Our results demonstrate direct bonding of InP coupons by means of µTP without the need of a strain-compensation layer. In this way, a promising route towards Complementary Metal-Oxide-Semiconductor compatible use of µTP for the hetero-integration of InP is provided.
(6) Ultrastrong Coupling of Si1−xGex Parabolic Quantum Wells to Terahertz Microcavities
F. Berkmann, T. Venanz, L. Baldassarre, E. Campagna, E. Talamas-Simola, L. Di Gaspare, C. Corley-Wiciak, G.Capellini,G. Nicotra, G. Sfuncia, A. Notargiacomo, E. Giovine, S. Cibella, M. Virgilio, G. Scalari, M. De Seta, M. Ortolani
ACS Photonics 11(7), 2776 (2024)
DOI: 10.1021/acsphotonics.4c00641, (IHP- Roma Tre University Joint Lab)
Control and manipulation of quantum states by light are increasingly important for both fundamental research and applications. This can be achieved through the strong coupling between light and semiconductor devices, typically observed at THz frequencies in 2D electron gases embedded in lithographic optical cavities. Here, we explore the possibility of achieving ultrastrong coupling between conduction sub-band states in Si1–xGex heterostructures and THz cavity photons fabricated with a potentially silicon-CMOS-compliant process. We developed Si1–xGex parabolic quantum wells with a transition at ω0 = 3.1 THz and hybrid metal-plasmonic THz patch-antenna microcavities resonating between 2 and 5 THz depending on the antenna length. In this first demonstration, we achieved anticrossing around 3 THz with spectroscopically measured Rabi frequency ΩR ≃ 0.7 THz (ΩR/ω0 ≃ 0.2, i.e., ultrastrong coupling). The present group-IV semiconductor material platform can be extended to the 5–12 THz range, where these semiconductors are transparent, as opposed to the III–V compound semiconductors plagued by strong THz optical phonon absorption. Moreover, the intersubband transition in parabolic quantum wells hosted by the nonpolar Si1–xGex crystal lattice is robust against carrier density and temperature variations, making the strength of the coupling only weakly temperature-dependent from 10 to 300 K. These results pave the way for the employment of the Si1–xGex material platform to perform fundamental research in ultrastrong light–matter coupling, fully exploiting the plasmonic character of the cavity mirror, as well as in ultrafast modulators and saturable absorbers for THz laser research.
(7) High Quality CMOS Ccompatible N-Type SiGe Parabolic Quantum Wells for Intersubband Photonics at 2.5-5 THz
E. Campagna, E. Talamas Simola, T. Venanzi, F. Berkmann, C. Corley-Wiciack, G. Nicotra, L. Baldassarre, G. Capellini, L. Di Gaspare, M. Virgilio, M. Ortolani, M. De Seta
Nanophotonics 13(10), 1793 (2024)
DOI: 10.1515/nanoph-2023-0704, (FLASH)
A parabolic potential that confines charge carriers along the growth direction of quantum wells semiconductor systems is characterized by a single resonance frequency, associated to intersubband transitions. Motivated by fascinating quantum optics applications leveraging on this property, we use the technologically relevant SiGe material system to design, grow, and characterize n-type doped parabolic quantum wells realized by continuously grading Ge-rich Si1−x Ge x alloys, deposited on silicon wafers. An extensive structural analysis highlights the capability of the ultra-high-vacuum chemical vapor deposition technique here used to precisely control the quadratic confining potential and the target doping profile. The absorption spectrum, measured by means of Fourier transform infrared spectroscopy, revealed a single peak with a full width at half maximum at low and room temperature of about 2 and 5 meV, respectively, associated to degenerate intersubband transitions. The energy of the absorption resonance scales with the inverse of the well width, covering the 2.5–5 THz spectral range, and is almost independent of temperature and doping, as predicted for a parabolic confining potential. On the basis of these results, we discuss the perspective observation of THz strong light–matter coupling in this silicon compatible material system, leveraging on intersubband transitions embedded in all-semiconductor microcavities.
(8) Optimization of the Metal Deposition Process for the Accurate Estimation of Low Metal-Graphene Contact-Resistance
D. Capista, R. Lukose, F. Majnoon, M. Lisker, Ch. Wenger, M. Lukosius
Proc. 47th International ICT and Electronics Convention (MIPRO 2024), 1561 (2024)
DOI: 10.1109/MIPRO60963.2024.10569895, (2D-EPL)
(9) SWCNT-Si Photodetector with Voltage-Dependent Active Surface
D. Capista, L. Lozzi, A. Di Bartolomeo, F. Giubileo, N. Martucciello, M. Passacantando
Nano Express 5(1), 015004 (2024)
DOI: 10.1088/2632-959X/ad12d9
New works on Carbon Nanotubes-Silicon MIS heterostructures showed that the presence of thickness inhomogeneities in the insulating layer across the device can be exploited increase its functionalities. In this work, we report the fabrication and the characterization of a device consisting of a Single-Walled Carbon Nanotube (SWCNT) film onto an n-type silicon substrate where the nitride interlayer between the nanotubes and the silicon has been intentionally etched to obtain different thickness. Three different silicon nitride thicknesses allow the formation of three regions, inside the same device, each with different photocurrents and responsivity behaviors. We show that by selecting specific biases, the photoresponse of the regions can be switched on and off. This peculiar behavior allows the device to be used as a photodetector with a voltage dependent active surface. Scanning photo response imaging of the device surface, performed at different biases highlight this behavior.
(10) Influence of En-APTAS Membrane on NO Gas Selectivity of HfO2-based Memristor Gas Sensors
M. Chae, D. Lee, H.-D. Kim
Japanese Journal of Applied Physics 63(3), 03SP07 (2024)
DOI: 10.35848/1347-4065/ad202d
Memristor-based gas sensors (gas sensor + memristor, gasistor) have gained popularity due to their high response characteristics and ability to operate at RT. In this paper, N-[3-(Trimethoxysilyl)propyl]ethylenediamine (en-APTAS), a commonly used membrane for NOx gas sensors, is applied in the gasistor with carbon nanotubes (CNTs)-top electrode (TE). As a result, we have demonstrated the response time was reduced by 104 s, and the response to 10 ppm Nitric oxide (NO) gas increased to 3.69, indicating an enhanced sensing property in a range of 10–50 ppm. Furthermore, when decorated with the proposed en-APTAS, the gasistor with CNTs-TE demonstrated a 3.76-fold increase in response to NO gas compared to NO2 gas, demonstrating remarkable selectivity. These improved features are attributed to the high adsorption energy of en-APTAS and the large kinetic diameter of NO2. The research proposal will be a foundational stage towards attaining selectivity in other gasistor studies.
(11) Low-Power Consumption IGZO Memristor-Based Gas Sensor Embedded in an Internet of Things Monitoring System for Isopropanol Alcohol Gas
M. Chae, D. Lee, H.-D. Kim
Micromachines 15(1), 77 (2024)
DOI: 10.3390/mi15010077
Low-power-consumption gas sensors are crucial for diverse applications, including environmental monitoring and portable Internet of Things (IoT) systems. However, the desorption and adsorption characteristics of conventional metal oxide-based gas sensors require supplementary equipment, such as heaters, which is not optimal for low-power IoT monitoring systems. Memristor-based sensors (gasistors) have been investigated as innovative gas sensors owing to their advantages, including high response, low power consumption, and room-temperature (RT) operation. Based on IGZO, the proposed isopropanol alcohol (IPA) gas sensor demonstrates a detection speed of 105 s and a high response of 55.15 for 50 ppm of IPA gas at RT. Moreover, rapid recovery to the initial state was achievable in 50 μs using pulsed voltage and without gas purging. Finally, a low-power circuit module was integrated for wireless signal transmission and processing to ensure IoT compatibility. The stability of sensing results from gasistors based on IGZO has been demonstrated, even when integrated into IoT systems. This enables energy-efficient gas analysis and real-time monitoring at ~0.34 mW, supporting recovery via pulse bias. This research offers practical insights into IoT gas detection, presenting a wireless sensing system for sensitive, low-powered sensors.
(12) Room Temperature Lattice Thermal Conductivity of GeSn Alloys
O. Concepción, J. Tiscareño-Ramírez, A.A. Chimienti, T. Classen, A.A. Corley-Wiciak, A. Tomadin, D. Spirito, D. Pisignano, P. Graziosi, Z. Ikonic, Q.T. Zhao, D. Grützmacher, G. Capellini, S. Roddaro, M. Virgilio, D. Buca
ACS Applied Energy Materials 7(10), 4394 (2024)
DOI: 10.1021/acsaem.4c00275, (SiGeSn TE)
CMOS-compatible materials for efficient energy harvesters at temperatures characteristic for on-chip operation and body temperature are the key ingredients for sustainable green computing and ultralow power Internet of Things applications. In this context, the lattice thermal conductivity (κ) of new group IV semiconductors, namely Ge1–xSnx alloys, are investigated. Layers featuring Sn contents up to 14 at.% are epitaxially grown by state-of-the-art chemical-vapor deposition on Ge buffered Si wafers. An abrupt decrease of the lattice thermal conductivity (κ) from 55 W/(m·K) for Ge to 4 W/(m·K) for Ge0.88Sn0.12 alloys is measured electrically by the differential 3ω-method. The thermal conductivity was verified to be independent of the layer thickness for strained relaxed alloys and confirms the Sn dependence observed by optical methods previously. The experimental κ values in conjunction with numerical estimations of the charge transport properties, able to capture the complex physics of this quasi-direct bandgap material system, are used to evaluate the thermoelectric figure of merit ZT for n- and p-type GeSn epitaxial layers. The results highlight the high potential of single-crystal GeSn alloys to achieve similar energy harvest capability as already present in SiGe alloys but in the 20 °C–100 °C temperature range where Si-compatible semiconductors are not available. This opens the possibility of monolithically integrated thermoelectric on the CMOS platform.
(13) The Lattice Strain Distribution in GexSn1-x Micro-Disks Investigated at the Sub 100-nm Scale
C. Corley-Wiciak, A.A. Corley-Wiciak, M.H. Zoellner, F. Rovaris, E. Zatterin, G. Sfuncia, G. Nicotra, I. Zaitsev, C. L. Manganelli, D. Spirito, A. Marzegalli, T.U. Schulli, N. von den Driesch, D. Buca, F. Montalenti, C. Richter, G. Capellini
ECS Transactions 114(2), 145 (2024)
DOI: 10.1149/11402.0145ecst, (GeSn Laser II)
Experimental assessment of the strain tensor within a microstructure is challenging, especially for small mechanical deformations acting over submicron length scales. In this work, we fully characterize the spatial strain distribution within a suspended micro-disk laser made of Ge1-xSnx alloy, with fine resolution <200 nm. We employ Scanning X-ray Diffraction Microscopy, a model-free method based on synchrotron radiation, to directly obtain maps of all components of lattice strain and rotation, including the shear strains, finding them on a magnitude ~10-3. We correlate these small elastic deformations to structural defects and the relaxation of the three-dimensional microstructure, demonstrating the potential of an advanced X-ray microscopy technique for microelectronics.
(14) Thermal Expansion and Temperature Dependence of Raman Modes in Epitaxial Layers of Ge and Ge1-xSnx
A.A. Corley-Wiciak, D. Ryzhak, M.H. Zoellner, C.L. Manganelli, O. Concepción, O. Skibitzki, D. Grützmacher, D.Buca, G. Capellini, D. Spirito
Physical Review Materials 8(2), 023801 (2024)
DOI: 10.1103/PhysRevMaterials.8.023801, (GeSn Laser II)
Temperature dependence of vibrational modes in semiconductors depends on lattice thermal expansion and anharmonic phonon-phonon scattering. Evaluating the two contributions from experimental data is not straightforward, especially for epitaxial layers that present mechanical deformation and anisotropic lattice expansion. In this work, a temperature-dependent Raman study in epitaxial Ge and layers is presented. A model is introduced for the Raman mode energy shift as a function of temperature, comprising thermal expansion of the strained lattice and anharmonic corrections. With support of x-ray diffraction, the model is calibrated on experimental data of epitaxial Ge grown on Si and grown on Ge/Si, finding that the main difference between bulk and epitaxial layers is related to the anisotropic lattice expansion. The phonon anharmonicity and other parameters do not depend on dislocation defect density (in the range 7⋅106 - 4⋅108 cm^-2) nor on alloy composition in the range 5-14 at.%. The strain-shift coefficient for the main model of Ge and for the Ge-Ge vibrational mode of is weakly dependent on temperature and is around -500 . In , the composition-shift coefficient amounts to -100 , independent of temperature and strain.
(15) Fast Circuit Simulation of Memristive Crossbar Arrays with Bimodal Stochastic Synaptic Weights
N. Dersch, Ch. Roemer, E. Perez, Ch. Wenger, M. Schwarz, B. Iniguez, A. Kloes
Proc. IEEE Latin American Electron Devices Conference (LAEDC 2024), (2024)
DOI: 10.1109/LAEDC61552.2024.10555829, (KI-IoT)
(16) Deposition of Polymers on Titanium Nitride Electrodes
Y. Efremenko, A. Laroussi, A. Sengül, A.A. Corley-Wiciak, I.A. Fischer, V.M. Mirsky
Coatings (MDPI) 14(2), 215 (2024)
DOI: 10.3390/coatings14020215, (iCampus II)
An application of titanium nitride (TiN) as an electrode for electrochemical deposition or characterization requires the removing of an insulating layer from its surface. This process was studied and optimized, the conditions for complete removing of this layer by treatment with oxalic acid were formulated. The obtained TiN surfaces were used for deposition of various conducting and non-conducting polymers. Two different approaches were applied: (i) in-situ electrochemical synthesis of the main classes of conducting polymers including polyaniline, polypyrrole, polythiophene and few of their derivates, (ii) electrostatically driven Layer-by-Layer (LbL) deposition of multilayers of oppositely charged polyelectrolytes. The deposited polymers were characterized by electrochemical methods. Electrochemical properties of deposited conducting polymers and their deposition to the TiN surface were comparable to that to the metallic electrodes. The LbL deposited polymer films demonstrated strong influence of the charge of the last deposited polymer on the redox reaction of ferri/ferrocyanide thus confirming charge alteration with each deposited polymer layer. The studied deposition technologies can be used for surface modification of TiN surface required in the applications of this material in chemical sensors and other devices.
(17) Evidence of Correlation between Membrane Phase Transition and Clonogenicity in Dehydrating Acinetobacter baumannii: A Combined Micro-Raman and AFM Study
E. Fardelli, M. Di Gioacchino, M. Lucidi, G. Capecchi, F. Bruni, A. Sodo, P. Visca, G. Capellini
The Journal of Physical Chemistry B 128(28), 6806 (2024)
DOI: 10.1021/acs.jpcb.4c01246, (IHP- Roma Tre University Joint Lab)
The Gram-negative bacterium Acinetobacter baumannii is one of the most resilient multidrug-resistant pathogens in hospitals. Among Gram-negative bacteria, it is particularly resistant to dehydration (anhydrobiosis), and this feature allows A. baumannii to persist in hospital environments for long periods, subjected to unfavorable conditions. We leverage the combination of μ-Raman spectroscopy and atomic force microscopy (AFM) to investigate the anhydrobiotic mechanisms in A. baumannii cells by monitoring the membrane (both inner and outer membranes) properties of four A. baumannii strains during a 16-week dehydration period and in response to temperature excursions. We noted that the membranes of A. baumannii remained intact during the dehydration period despite undergoing a liquid-crystal-to-gel-phase transition, accompanied by changes in the mechanical properties of the membrane. This was evident from the AFM images, which showed the morphology of the bacterial cells alongside modifications of their superficial mechanical properties, and from the alteration in the intensity ratio of μ-Raman features linked to the CH3 and CH2 symmetric stretching modes. Furthermore, employing a universal power law revealed a significant correlation between this ratio and bacterial fitness across all tested strains. Additionally, we subjected dry A. baumannii to a temperature-dependent experiment, the results of which supported the correlation between the Raman ratio and culturability, demonstrating that the phase transition becomes irreversible when A. baumannii cells undergo different temperature cycles. Besides the relevance to the present study, we argue that μ-Raman can be used as a powerful nondestructive tool to assess the health status of bacterial cells based on membrane properties with a relatively high throughput.
(18) Area-Efficient Digital Design using RRAM-CMOS Standardcells
M. Fritscher, M. Uhlmann, P. Ostrovskyy, D. Reiser, J.-C. Chen, M.A. Schubert, C. Schulze, G. Kahmen, D. Fey, M. Reichenbach, M. Kristic, Ch. Wenger
Proc. IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2024), 81 (2024)
DOI: 10.1109/ISVLSI61997.2024.00026, (iCampus II)
(19) Area-Efficient Digital Design using RRAM-CMOS Standardcells
M. Fritscher, M. Uhlmann, P. Ostrovskyy, D. Reiser, J.-C. Chen, M.A. Schubert, C. Schulze, G. Kahmen, D. Fey, M. Reichenbach, M. Kristic, Ch. Wenger
Proc. IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2024), 81 (2024)
DOI: 10.1109/ISVLSI61997.2024.00026, (6G-RIC)
(20) Area-Efficient Digital Design using RRAM-CMOS Standardcells
M. Fritscher, M. Uhlmann, P. Ostrovskyy, D. Reiser, J.-C. Chen, M.A. Schubert, C. Schulze, G. Kahmen, D. Fey, M. Reichenbach, M. Kristic, Ch. Wenger
Proc. IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2024), 81 (2024)
DOI: 10.1109/ISVLSI61997.2024.00026, (KI-IoT)
(21) From Device to Application - Integrating RRAM Accelerator Blocks into Large AI Systems
M. Fritscher, Ch. Wenger, M. Krstic
Proc. IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2024), 592 (2024)
DOI: 10.1109/ISVLSI61997.2024.00111, (iCampus II)
(22) From Device to Application - Integrating RRAM Accelerator Blocks into Large AI Systems
M. Fritscher, Ch. Wenger, M. Krstic
Proc. IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2024), 592 (2024)
DOI: 10.1109/ISVLSI61997.2024.00111, (6G-RIC)
(23) Improving Epitaxial Growth of γ-Al2O3 Films via Sc2O3/Y2O3 Oxide Buffers
S. Gougam, M.A. Schubert, D. Stolarek, S.B. Thapa, M.H. Zoellner
Advanced Materials Interfaces 221(12), 2400228 (2024)
DOI: 10.1002/pssa.202400228, (GaN HEMT support)
Heteroepitaxial growth of γ-Al2O3 on Sc2O3/Y2O3/Si (111) is achieved with oxygen plasma-assisted molecular beam epitaxy in order to prevent polycrystalline grain boundary formation caused by lattice mismatch. Substrate temperature as well as oxygen flow are adjusted to optimize epitaxial growth conditions around 715–760 °C and 1.9 sccm, respectively. Epitaxial growth is monitored in situ by reflection high-energy diffraction, while surface morphology is studied by scanning electron microscopy ex-situ. X-ray diffraction indicates epitaxial out-of-plane 111 orientation with oxygen flow above 0.6 sccm. However, transmission electron microscopy shows stacking fault formation for high oxygen flows. Finally, nanobeam electron diffraction confirms Smrčok model of a spinel-like γ-Al2O3 crystal structure.
(24) Characterization of Drop Cast as Strategy for the Biofunctionalization of Plasmonic Sensors Based on Highly Doped Ge-Based
E. Hardt, R. Varricchio, C.A. Chavarin, O. Skibitzki, A. di Masi, G. Capellini
Proc. iCampus Cottbus Conference (iCCC 2024), 191 (2024)
(iCampus II)
(25) Investigation of Defect Formation in Monolithic Integrated GaP Islands on Si Nanotips Wafer
I. Häusler, I. Häusler, R. Řepa, A. Hammud, O. Skibitzki, F. Hatami
Electronics 13(15), 2945 (2024)
DOI: 10.3390/electronics13152945, (NHEQuanLEA)
The monolithic integration of gallium phosphide (GaP), with its green band gap, high refractive index, large optical non-linearity, and broad transmission range on silicon (Si) substrates, is crucial for Si-based optoelectronics and integrated photonics. However, material mismatches, including thermal expansion mismatch and polar/non-polar interfaces, cause defects such as stacking faults, microtwins, and anti-phase domains in GaP, adversely affecting its electronic properties. Our paper presents a structural and defect analysis using scanning transmission electron microscopy, high-resolution transmission electron microscopy, and scanning nanobeam electron diffraction of epitaxial GaP islands grown on Si nanotips embedded in SiO2. The Si nanotips were fabricated on 200 mm n-type Si (001) wafers using a CMOS-compatible pilot line, and GaP islands were grown selectively on the tips via gas-source molecular-beam epitaxy. Two sets of samples were investigated: GaP islands nucleated on open Si nanotips and islands nucleated within self-organized nanocavities on top of the nanotips. Our results reveal that in both cases, the GaP islands align with the Si lattice without dislocations due to lattice mismatch. Defects in GaP islands are limited to microtwins and stacking faults. When GaP nucleates in the nanocavities, most defects are trapped, resulting in defect-free GaP islands. Our findings demonstrate an effective approach to mitigate defects in epitaxial GaP on Si nanotip wafers fabricated by CMOS-compatible processes.
(26) Integration Concept of Plasmonic TiN Nanohole Arrays in a 200 mm BiCMOS Si Technology for Refractive Index Sensor Applications
J. Jose, Ch. Mai, S. Reiter, Ch. Wenger, I.A. Fischer
Proc. iCampus Cottbus Conference (iCCC 2024), 96 (2024)
DOI: 10.5162/iCCC2024/7.2, (iCampus)
(27) Selective Growth of GaP Crystals on CMOS-Compatible Si Nanotips Wafer by Gas Source Molecular Beam Epitaxy
N. Kafi, S. Kang, C. Golz, A. Rodrigues-Weisensee, L. Persichetti, D. Ryzhak, G. Capellini, D. Spirito, M. Schmidbauer, A. Kwasniewski, C. Netzel, O. Skibitzki, F. Hatami
Crystal Growth & Design 24(7), 2724 (2024)
DOI: 10.1021/acs.cgd.3c01337, (NHEQuanLEA)
Gallium phosphide (GaP) is a III–V semiconductor with remarkable optoelectronic properties, and it has almost the same lattice constant as silicon (Si). However, to date, the monolithic and large-scale integration of GaP devices with silicon remains challenging. In this study, we present a nanoheteroepitaxy approach using gas-source molecular-beam epitaxy for selective growth of GaP islands on Si nanotips, which were fabricated using complementary metal–oxide semiconductor (CMOS) technology on a 200 mm n-type Si(001) wafer. Our results show that GaP islands with sizes on the order of hundreds of nanometers can be successfully grown on CMOS-compatible wafers. These islands exhibit a zinc-blende phase and possess optoelectronic properties similar to those of a high-quality epitaxial GaP layer. This result marks a notable advancement in the seamless integration of GaP-based devices with high scalability into Si nanotechnology and integrated optoelectronics.
(28) Controlled Integration of InP Nanoislands with CMOS-Compatible Si using Nanoheteroepitaxy Approach
A. Kamath, D. Ryzhak, A. Rodrigues, N. Kafi, C. Golz, D. Spirito, O. Skibitzki, L. Persichetti, M. Schmidbauer, F. Hatami
Materials Science in Semiconductor Processing 182, 108585 (2024)
DOI: 10.1016/j.mssp.2024.108585, (NHEQuanLEA)
Indium phosphide (InP) nanoislands are grown on pre-patterned Silicon (001) nanotip substrate using gas-source molecular-beam epitaxy via nanoheteroepitaxy approach. The study explores the critical role of growth temperature in achieving selectivity, governed by diffusion length. Our study reveals that temperatures of about 480 °C and lower, lead to parasitic growth, while temperatures about 540 °C with an indium growth rate of about 0.7 Å.s−1 and phosphine flux of 4 sccm inhibit selective growth. The establishment of an optimal temperature window for selective InP growth is demonstrated for a temperature range of 490 °C to 530 °C. Comprehensive structural and optical analyses using atomic force microscopy, Raman spectroscopy, x-ray diffraction, and photoluminescence confirm a zincblende structure of indium phosphide with fully relaxed islands. These results demonstrate the capability to precisely tailor the position of InP nanoislands through a noncatalytic nanoheteroepitaxy approach, marking a crucial advancement in integrating InP nanoisland arrays on silicon devices.
(29) Enhanced Optical and Electrical Properties of Indium Tin Oxide for Solar Cell Applications via Post-Microwave Treatment
T. Kim, M. Chae, D. Lee, H.-D. Kim
Optical Materials 149, 115093 (2024)
DOI: 10.1016/j.optmat.2024.115093
The method to enhance current density in silicon heterojunction (SHJ) solar cells involves increasing surface roughness through higher temperature during indium thin oxide (ITO) deposition. Although cost-effective, the optoelectrical properties require further enhancement for solar cell application. Thus, post-heat treatment is necessary to improve their optoelectrical properties. Microwave treatment (MWT) emerges as a promising way to selectively generate heat in ITO briefly. Therefore, we propose a MWT process to enhance optoelectrical properties. After depositing ITO at 500 °C and then MWT, the average transmittance is over 98.7% in the visible range, with a sheet resistance of 81 Ω/□. Finally, the weighted reflectance was calculated using measured reflectance data to assess the applicability in solar cell applications. As a result, the calculation shows that a weighted reflectance value of 0.6% after MWT. These results indicate that MWT effectively enhances optoelectrical properties of ITO, which are essential for the development of solar cell applications.
(30) Experimental Determination of Si Self-Interstitial Emission During Oxide Precipitation in Czochralski Silicon
G. Kissinger, D. Kot, A. Sattler
ECS Journal of Solid State Science and Technology 13(8), 083005 (2024)
DOI: 10.1149/2162-8777/ad670d, (Future Silicon Wafers)
We used the method of Torigoe and Ono [J. Appl. Phys., 121, 215103 (2017)] to investigate the kinetics of β, the number of self-interstitials emitted per precipitated oxygen atom, during oxide precipitation in Czochralski silicon. For this purpose, we used pp- epitaxial wafers with a buried highly B-doped epitaxial layer which were annealed with and without thermal pre-treatments at 950 °C. From the results we conclude that in the initial phase of oxide precipitation without thermal pre-treatment β is very high before it drops to low values. With a thermal pre-treatment at 800 °C for 2 h, the initial value of β is somewhat lower before the drop also occurs. If a nucleation anneal is carried out before the thermal treatment at 950 °C the β values are low from the beginning. All of these results confirm our previously published theoretical predictions experimentally. This work also shows that the crystal pulling process can affect the initial β value because grown-in oxide precipitate nuclei can reduce their strain by vacancy absorption. Therefore, high vacancy supersaturation during crystal cooling while oxide precipitate nucleate would lead to somewhat lower initial β values.
(31) Experimental Determination of Si Self-Interstitial Emission During Oxide Precipitation in Czochralski Silicon
G. Kissinger, D. Kot, A. Sattler
ECS Journal of Solid State Science and Technology 13(8), 083005 (2024)
DOI: 10.1149/2162-8777/ad670d
We used the method of Torigoe and Ono [J. Appl. Phys., 121, 215103 (2017)] to investigate the kinetics of β, the number of self-interstitials emitted per precipitated oxygen atom, during oxide precipitation in Czochralski silicon. For this purpose, we used pp- epitaxial wafers with a buried highly B-doped epitaxial layer which were annealed with and without thermal pre-treatments at 950°C. From the results we conclude that in the initial phase of oxide precipitation without thermal pretreatment β is very high before it drops to low values. With a thermal pre-treatment at 800°C for 2 h, the initial value of β is somewhat lower before the drop also occurs. If a nucleation anneal is carried out before the thermal treatment at 950°C the β values are low from the beginning. All of these results confirm our previously published theoretical predictions experimentally. This work also shows that the crystal pulling process can affect the initial β value because grown-in oxide precipitate nuclei can reduce their strain by vacancy absorption. Therefore, high vacancy supersaturation during crystal cooling while oxide precipitate nucleate would lead to somewhat lower initial β values.
(32) 200 mm Wafer Level Characterization at 2K of Si/SiGe Field-Effect Transistors
N.D. Komerički, P. Muster, F. Reichmann, T. Huckemann, D. Kaufmann, Y. Yamamoto, M. Lisker, W. Langheinrich, L.R. Schreiber, H. Bluhm, R. Quay
ECS Transactions 114(2), 133 (2024)
(QUASAR)
Si/SiGe has proven to be an excellent spin qubit platform, but industrial production of large-scale spin-qubit chips is missing. We use field effect transistors (FETs) to monitor and develop the quality of the fabrication process on 200 mm wafers at 2 K using a cryogenic wafer prober (CWP). This mass-characterization technique provides statistics on device performance. We observe variations in drain off current and gate threshold voltage of 213 FETs. These variations are related to bias voltage conditions during CWP cooldown, which differ from qubit chip cooldown. To address this, a new FET structure with an additional top gate is introduced, effectively suppressing unintentional charge accumulations. This eliminates drain off currents and improves homogeneity of FET characteristics at 2 K. Our results highlight significant impact of bias conditions during qubit chip cooldown, which, if not accounted for in the qubit chip design, can lead to incorrect conclusions when using CWP.
(33) Rational Design and Development of Room Temperature Hydrogen Sensors Compatible with CMOS Technology: A Necessary Step for the Coming Renewable Hydrogen Economy
J. Kosto, R. Tschammer, C. Morales, K. Henkel, C.A. Chavarin, I. Costina, M. Ratzke, Ch. Wenger, I.A. Fischer, J.I. Flege
Proc. iCampus Conference Cottbus (iCCC 2024), 182 (2024)
DOI: 10.5162/iCCC2024/P21
(34) Response Characteristic in Discontinuous NO Gas Flows for Boron Nitride Memristor Gas Sensor Devices
D. Lee, M. Chae, H.-D. Kim
Sensors and Actuators B: Chemical 401, 135063 (2024)
DOI: 10.1016/j.snb.2023.135063
Most NO gas sensors are evaluated using continuous NO gas, making it difficult to accurately recognize discontinuous gas flow. Here, to reveal the response characteristics in discontinuous gas flows, we investigated a response in various NO gas flows using a boron nitride-based memristor gas sensor. In conventional continuous gas flow, the response characteristic of 16% showed for 5 ppm NO gas, while in the pulse like gas injection with a width of 1 second and an interval of 1 second, the response only increased to 8.13%, meaning that it is difficult to estimate the overall environment of NO gas using only continuous gases, as well as showing that a host of data is needed for discontinuous gases. As a result, we found that a neural network model trained by continuous/discontinuous NO gas data accurately predicts the concentration of discontinuous NO gas with a low error of 5.6%.
(35) Graphene for Photonic Applications
M. Lukosius, R. Lukose, P.K. Dubey, A.I. Raju, M. Lisker, A. Mai, Ch. Wenger
Proc. 47th International ICT and Electronics Convention (MIPRO 2024), 1614 (2024)
DOI: 10.1109/MIPRO60963.2024.10569652, (2D-EPL)
(36) Towards a CMOS Compatible Refractive Index Sensor: Cointegration of TiN Nanohole Arrays and Ge Photodetectors in a 200 mm Wafer Silicon Technology
Ch. Mai, A. Peczek, A. Kroh, J. Jose, S. Reiter, Ch. Wenger, I.A. Fischer
Optics Express 32(17), 29099 (2024)
DOI: 10.1364/OE.530081, (iCampus)
In this work we present the monolithic integration of a TiN nanohole array and a Ge photodetector towards a CMOS compatible fabrication of a refractive index sensor in a 200 mm wafer silicon technology. We developed a technology process, which enables a fabrication with high yields of around 90 %. Ge photodetectors with a Ge layer thickness of 450 nm and an area of 1600 µm² (40 µm x 40 µm) show dark current densities of around 129 mA/cm² and responsivities of 0.114 A/W measured by top illumination (TE polarization; λ = 1310 nm; angle of incidence = 14 °) at a reverse bias of 1 V. Nanohole arrays were structured in a 150 nm thick TiN layer. They were integrated in the Back End of Line and placed spatially close to the Ge photodetectors. After the metallization, passivation and pad opening, the nanohole arrays were released with the help of an amorphous silicon stop layer. A significant impact of the TiN nanohole arrays on the optical behavior of the photodetector could be proven on wafer level. Photocurrent measurements by top illumination confirm a strong dependence of optical properties on the polarization of the incident light and the nanohole array design. We demonstrate very stable photocurrents on wafer level with a standard deviation of σ < 6 %.
(37) Influence of Stop and Gate Voltage on Resistive Switching of 1T1R HfO2-based Memristors, a Modeling and Variability Analysis
D. Maldonado, A. Cantudo, K.D.S. Reddy, S. Pechmann, M. Uhlmann, Ch. Wenger, J.B. Roldán, E. Pérez
Materials Science in Semiconductor Processing 182, 108726 (2024)
DOI: 10.1016/j.mssp.2024.108726, (KI-IoT)
Memristive devices, particularly resistive random access memory (RRAM) cells based on hafnium oxide (HfO₂) dielectrics, exhibit promising characteristics for a wide range of applications. In spite of their potential, issues related to intrinsic variability and the need for precise simulation tools and modeling methods remain a medium-term hurdle. This study addresses these challenges by investigating the resistive switching (RS) behavior of different 1T1R HfO₂-based memristors under various experimental conditions. Through a comprehensive experimental analysis, we extract RS parameters using different numerical techniques to understand the cycle-to-cycle (C2C) and device-to-device (D2D) variability. Additionally, we employ advanced simulation methodologies, including circuit breaker-based 3D simulation, to shed light on our experimental findings and provide a theoretical framework to disentangle the switching phenomena. Our results offer valuable insights into the RS mechanisms and variability, contributing to the improvement of robust parameter extraction methods, which are essential for the industrial application of memristive devices.
(38) Strain in Hybrid Organic-Inorganic Metal Halide Perovskites Microstructures by Numerical Simulations
C.L. Manganelli, B. Martin-Garcia, D. Spirito
ChemPhysChem 25(18), e202400394 (2024)
DOI: 10.1002/cphc.202400394
Hybrid organic-inorganic metal halide perovskites (HOIPs) are promising materials for optoelectronics applications. Their optical and electrical properties can be controlled by strain engineering, that results from application of local elastic deformation or deposition on pre-patterned substrates acquiring a conformal 3D shape. Most interesting, their mechanical properties depend on their crystal structure, composition and dimensionality. We explore by numerical simulations the deformation of a selection of HOIPs comprising a broad range of elastic properties. We consider a cylindrical geometry with the formation of microdomes on flakes. Radial and transversal forces are considered, finding that the radial force is more effective to obtain large deformation. Large vertical displacement and strain is obtained for HOIPs with low stiffness. The layered nature of HOIPs, that are formed by inorganic layers of different thickness and organic spacers, is also investigated, revealing a non-monotonous trend with the proportion of inorganic to organic part.
(39) Low Disorder and High Mobility 2DEG in Si/SiGe Fabricated in 200 mm BiCMOS Pilotline
A. Mistroni, F. Reichmann, Y. Yamamoto, M.H. Zoellner, G. Capellini, L. Diebel, D. Bougeard, M. Lisker
ECS Transactions 114(2), 123 (2024)
DOI: 10.1149/11402.0123ecst, (QUASAR)
Spin qubits based on quantum dots built on Si/SiGe heterostructures are a leading contender for achieving large-scale quantum computation. The quality of quantum dots fabricated on these heterostructures is directly connected to the quality of the 2D electron gas (2DEG) confined in the strained Silicon quantum well. The properties of such 2DEG can be readily assessed using Hall bar-shaped field-effect transistors (HB-FETs) and magneto-transport measurements, enabling a faster feedback loop for heterostructure optimization process. In this work, we present our recent progress in enabling silicon-based quantum computation by demonstrating fundamental components for 2DEG characterization, all developed in IHP's 200 mm BiCMOS pilot line. We demonstrate fully functional HB-FETs on Si/SiGe heterostructures grown on 200 mm silicon wafers, showcasing state-of-the-art 2DEG with maximum carrier mobility exceeding 300,000 cm²/Vs and a percolation threshold of 6.3×1010 cm⁻². These results will help advance spin qubit research based on Si/SiGe heterostructures.
(40) Bottom-Up Design of a Supercycle Recipe for Atomic Layer Deposition of Tunable Indium Gallium Zinc Oxide Thin Films
C. Morales, P. Plate, L. Marth, F. Naumann, M. Kot, C. Janowitz, P. Kus, M.H. Zoellner Ch. Wenger, K. Henkel, J.I. Flege
ACS Applied Electronic Materials 6(8), 5694 (2024)
DOI: 10.1021/acsaelm.4c00730
We present a successful bottom-up approach to design a generic plasma-enhanced atomic layer deposition (PEALD) supercycle recipe to grow high-quality indium gallium zinc oxide (IGZO) thin films with tunable composition at a relatively low temperature of 150 °C. In situ real-time ellipsometric characterization in combination with ex situ complementary techniques has been used to optimize the deposition process and quality of the films by identifying and solving growth challenges such as degree of oxidation, nucleation delays, or elemental composition. The developed supercycle approach enables facile control of the target composition by adapting the subcycle ratios within the supercycle process. Compared to other low-temperature deposition techniques resulting in amorphous films, our PEALD–IGZO process at 150 °C results in nearly amorphous, nanocrystalline films. The preparation of IGZO films at low temperature by a supercycle PEALD approach allows controlling the thickness, composition, and electrical properties while preventing thermally induced segregation.
(41) Blooming and Pruning: Learning from Mistakes with Memristive Synapses
K. Nikiruy, E. Perez, A. Baroni, K.D.S. Reddy, S. Pechmann, Ch. Wenger, M. Ziegler
Scientific Reports 14, 7802 (2024)
DOI: 10.1038/s41598-024-57660-4, (KI-IoT)
Blooming and pruning is one of the most important developmental mechanisms of the biological brain in the first years of life, enabling it to adapt its network structure to the demands of the environment. The mechanism is thought to be fundamental for the development of cognitive skills. Inspired by this, Chialvo and Bak proposed in 1999 a learning scheme that learns from mistakes by eliminating from the initial surplus of synaptic connections those that lead to an undesirable outcome. Here, this idea is implemented in a neuromorphic circuit scheme using CMOS integrated HfO2-based memristive devices. The implemented two-layer neural network learns in a self-organized manner without positive reinforcement and exploits the inherent variability of the memristive devices. A combined experimental and simulation-based parameter study is presented to find the relevant system and device parameters leading to a compact and robust memristive neuromorphic circuit that can handle association tasks.
(42) Three-Dimensional Reconstruction of Interface Roughness and Alloy Disorder in Ge/GeSi Asymmetric Coupled Quantum Wells using Electron Tomography
E. Paysen, G. Capellini, E. Talamas Simola, L. Di Gaspare, M. De Seta, M. Virgilio, A. Trampert
ACS Applied Materials & Interfaces 16(3), 4189 (2024)
DOI: 10.1021/acsami.3c15546, (FLASH)
Interfaces play an essential role in the performance of ever-shrinking semiconductor devices, making comprehensive determination of their three-dimensional (3D) structural properties increasingly important. This becomes even more relevant in compositional interfaces, as is the case for Ge/GeSi heterostructures, where chemical intermixing is pronounced in addition to their morphology. We use the electron tomography method to reconstruct buried interfaces and layers of asymmetric coupled Ge/Ge0.8Si0.2 multiquantum wells, which are considered a potential building block in THz quantum cascade lasers. The three-dimensional reconstruction is based on a series of high-angle annular dark-field scanning transmission electron microscopy images. It allows chemically sensitive investigation of a relatively large interfacial area of about (80 × 80) nm2 with subnanometer resolution as well as the analysis of several interfaces within the multiquantum well stack. Representing the interfaces as iso-concentration surfaces in the tomogram and converting them to topographic height maps allows the determination of their morphological roughness as well as layer thicknesses, reflecting low variations in either case. Simulation of the reconstructed tomogram intensities using a sigmoidal function provides in-plane-resolved maps of the chemical interface widths showing a relatively large spatial variation. The more detailed analysis of the intermixed region using thin slices from the reconstruction and additional iso-concentration surfaces provides an accurate picture of the chemical disorder of the alloy at the interface. Our comprehensive three-dimensional image of Ge/Ge0.8Si0.2 interfaces reveals that in the case of morphologically very smooth interfaces─depending on the scale considered─the interface alloy disorder itself determines the overall characteristics, a result that is fundamental for highly miscible material systems.
(43) A Current Mirror Based Read Circuit Design with Multi-Level Capability for Resistive Switching Devices
S. Pechmann, E. Perez, Ch. Wenger, A. Hagelauer
Proc. International Conference on Electronics, Information, and Communication (ICEIC 2024), (2024)
DOI: 10.1109/ICEIC61013.2024.10457188, (KI-IoT)
(44) Advancing Si Spin Qubit Research: Process Integration of Hall Bar FETs on Si/SiGe in a 200mm BiCMOS Pilot Line
F. Reichmann, A. Mistroni, Y. Yamamoto, P. Kulse, St. Marschmeyer, D. Wolansky, O. Fursenko, M.H. Zoellner, G. Capellini, L. Diebel, D. Bougeard, M. Lisker
ECS Transactions 114(2), 109 (2024)
DOI: 10.1149/11402.0109ecst, (QUASAR)
Hall bar-shaped field-effect transistors (HB-FETs) are excellent devices for comprehensive, large-scale testing of Si/SiGe heterostructures in spin qubit applications. In this paper, we detail the process integration of high-quality HB-FETs onto Si/SiGe heterostructures within the IHP 200 mm BiCMOS pilot line. We compare various SiO2 deposition techniques to identify the most suitable process for a low thermal budget gate dielectric. The integration of HB-FETs on Si/SiGe heterostructures is discussed with a focus on the contact implant. We demonstrate the functionality of the devices at room temperature and at cryogenic temperatures. Magnetotransport measurements reveal a maximum electron mobility exceeding 300,000 cm²/Vs at 1.5 K.
(45) On-Chip Refractive Index Sensors Based on Plasmonic TiN Nanohole Arrays
S. Reiter, A. Sengül, Ch. Mai, D. Spirito, Ch. Wenger, I.A. Fischer
Proc. IEEE Silicon Photonics Conference (SiPhotonics 2024), TuP10 (2024)
DOI: 10.1109/SiPhotonics60897.2024.10544048, (iCampus II)
(46) Thermal Compact Modeling and Resistive Switching Analysis in Titanium Oxide-Based Memristors
J.B. Roldán, A. Cantudo, D. Maldonado, C. Aguilera-Pedregosa, E. Moreno, T. Swoboda, F. Jimenez-Molinos, Y. Yuan, K. Zhu, M. Lanza, M.M. Rojo
ACS Applied Electronic Materials 6(2), 1424 (2024)
DOI: 10.1021/acsaelm.3c01727, (KI-IoT)
Resistive switching devices based on the Au/Ti/TiO2/Au stack were developed. In addition to standard electrical characterization by means of I–V curves, scanning thermal microscopy was employed to localize the hot spots on the top device surface (linked to conductive nanofilaments, CNFs) and perform in-operando tracking of temperature in such spots. In this way, electrical and thermal responses can be simultaneously recorded and related to each other. In a complementary way, a model for device simulation (based on COMSOL Multiphysics) was implemented in order to link the measured temperature to simulated device temperature maps. The data obtained were employed to calculate the thermal resistance to be used in compact models, such as the Stanford model, for circuit simulation. The thermal resistance extraction technique presented in this work is based on electrical and thermal measurements instead of being indirectly supported by a single fitting of the electrical response (using just I–V curves), as usual. Besides, the set and reset voltages were calculated from the complete I–V curve resistive switching series through different automatic numerical methods to assess the device variability. The series resistance was also obtained from experimental measurements, whose value is also incorporated into a compact model enhanced version.
(47) Stochastic Resonance in 2D Materials Based Memristors
J.B. Roldán, A. Cantudo, J.J. Torres, D. Maldonado, Y. Shen, W. Zheng, Y. Yuan, M. Lanza
Nature Nanotechnology 8, 7 (2024)
DOI: 10.1038/s41699-024-00444-1, (KI-IoT)
Stochastic resonance is an essential phenomenon in neurobiology, it is connected to the constructive role of noise in the signals that take place in neuronal tissues, facilitating information communication, memory, etc. Memristive devices are known to be the cornerstone of hardware neuromorphic applications since they correctly mimic biological synapses in many different facets, such as short/long-term plasticity, spike-timing-dependent plasticity, pair-pulse facilitation, etc. Different types of neural networks can be built with circuit architectures based on memristive devices (mostly spiking neural networks and artificial neural networks). In this context, stochastic resonance is a critical issue to analyze in the memristive devices that will allow the fabrication of neuromorphic circuits. We do so here with h-BN based memristive devices from different perspectives. It is found that the devices we have fabricated and measured clearly show stochastic resonance behaviour. Consequently, neuromorphic applications can be developed to account for this effect, that describes a key issue in neurobiology with strong computational implications.
(48) Selective Epitaxy of Germanium on Silicon for the Fabrication of CMOS Compatible Short-Wavelength Infrared Photodetectors
D. Ryzhak, A.A. Corley-Wiciak, P. Steglich, Y. Yamamoto, J. Frigerio, R. Giani, A. De Iacovo, D. Spirito, G. Capellini
Materials Science in Semiconductor Processing 176, 108308 (2024)
DOI: 10.1016/j.mssp.2024.108308, (VISIR2)
Here we present the selective epitaxial growth of Ge on Si using reduced pressure chemical vapor deposition on SiO2/Si solid masks realized on 200 mm Si wafers, aiming at manufacturing integrated visible/short-wavelength infrared photodetectors. By a suitable choice of the reactants and of the process conditions, we demonstrated highly selective and pattern-independent growth of Ge microstructure featuring high crystalline quality. The Ge “patches” show a distinct faceting, with a flat top (001) facet and low energy facets such as e.g. {113} and {103} at their sidewalls, independently on their size. Interdiffusion of Si in to the Ge microcrystals is limited to an extension of ∼20 nm from the heterointerface. The Ge patches resulted to be plastically relaxed with threading dislocation density values better or on par than those observed in continuous two-dimensional Ge/Si epilayer in the low 107 cm−2 range. A residual tensile strain was observed for patches with size >10 μm, due to elastic thermal strain accumulation, as confirmed by μ-Raman spectroscopy and μ-photoluminescence characterization. Polarization-dependent Raman mapping highlights the strain distribution associated to the tridimensional shape. On this material, Ge photodiodes were fabricated and characterized, showing promising optoelectronic performances.
(49) Nanoheteroepitaxy of Ge and SiGe on Si: Role of Composition and Capping on Quantum Dot Photoluminescence
D. Ryzhak, J. Aberl, E. Prado-Navarrete, L. Vukušić, A.A. Corley-Wiciak, O. Skibitzki, M.H. Zoellner, M.A. Schubert, M. Virgilio, M. Brehm, G. Capellini, D. Spirito
Nanotechnology 35(50), 505001 (2024)
DOI: 10.1088/1361-6528/ad7f5f, (NHEQuanLEA)
We investigate the nanoheteroepitaxy of SiGe and Ge quantum dots (QDs) grown on nanotips substrates realized in Si(001) wafers. Due to the lattice strain compliance, enabled by the nanometric size of the tip and the limited dot/substrate interface area, which helps to reduce dot/substrate interdiffusion, the strain and SiGe composition in the QDs could be decoupled. This demonstrates a key advantage of the nanoheteroepitaxy over the Stranski-Krastanow growth mechanism. Nearly semi-spherical, defect-free, ∼100 nm wide SiGe QDs with different Ge contents were successfully grown on the nanotips with high selectivity and size uniformity. On the dots, thin dielectric capping layers were deposited, improving the optical properties by the passivation of surface states. Intense photoluminescence was measured from all samples investigated with emission energy, intensity, and spectral linewidth dependent on the SiGe composition of the QDs and the different capping layers. Radiative recombination occurs in the QDs, and its energy matches the results of band-structure calculations that consider strain compliance between the QD and the tip. The nanotips arrangement and the selective growth of QDs allow to studying the PL emission from only 3-4 QDs, demonstrating a bright emission and the possibility of selective addressing. These findings will support the design of optoelectronic devices based on CMOS-compatible emitters.
(50) Lattice Dynamics in Chiral Tellurium by Linear and Circularly Polarized Raman Spectroscopy: Crystal Orientation and Handedness
D. Spirito, S. Marras, B. Martin-Garcia
Journal of Materials Chemistry C: Materials for Optical and Electronic Devices 12(7), 2544 (2024)
DOI: 10.1039/D3TC04333A
Trigonal tellurium (Te) has attracted researchers’ attention due to its transport and optical properties, which include electrical magneto-chiral anisotropy, spin polarization and bulk photovoltaic effect. It is the anisotropic and chiral crystal structure of Te that drive these properties, so the determination of its crystallographic orientation and handedness is key to their study. Here we explore the structural dynamics of Te bulk crystals by angle-dependent linearly polarized Raman spectroscopy and symmetry rules in three different crystallographic orientations. The angle-dependent intensity of the modes allows us to determine the arrangement of the helical chains and distinguish between crystallographic planes parallel and perpendicular to the chain axis. Furthermore, under different configurations of circularly polarized Raman measurements and crystal orientations, we observe the shift of two phonon modes only in the (0 0 1) plane. The shift is positive or negative depending on the handedness of the crystals, which we determine univocally by chemical etching. Our analysis of three different crystal faces of Te highlights the importance of selecting the proper orientation and crystallographic plane when investigating the transport and optical properties of this material. These results offer insight into the crystal structure and symmetry in other anisotropic and chiral materials, and open new paths to select a suitable crystal orientation when fabricating devices.
(51) P-Type Schottky Contacts for Graphene Adjustable-Barriers Phototransistors
C. Strobel, C.A. Chavarin, M. Knaut, M. Albert, A. Heinzig, L. Gummadi, Ch. Wenger, T. Mikolajick
Nanomaterials 14(13), 1140 (2024)
DOI: 10.3390/nano14131140, (Graphen)
The graphene adjustable-barriers phototransistor is an attractive novel device for potential high speed and high responsivity dual-band photodetection. In this device graphene is embedded between the semiconductors silicon and germanium. Both n-type and p-type Schottky contacts between graphene and the semiconductors are required for this device. While n-type Schottky contacts are widely investigated, reports about p-type Schottky contacts between graphene and the two involved semiconductors are scarce. In this study, we demonstrate a p-type Schottky contact between graphene and p-germanium. A clear rectification with on-off ratios of close to 103 (± 5V) and a distinct photoresponse at telecommunication wavelengths in the infrared are achieved. Further, p-type silicon is transferred to or deposited on graphene and we also observe rectification and photoresponse in the visible range for some of these p-type Schottky junctions. These results are an important step towards a functional graphene adjustable-barriers phototransistor.
(52) High Gain Graphene Based Hot Electron Transistor with Record High Saturated Output Current Density
C. Strobel, C.A. Chavarin, M. Knaut, S. Völkel, M. Albert, A. Hiess, B. Max, Ch. Wenger, R. Kirchner, T. Mikolajick
Advanced Electronic Materials 10(2), 2300624 (2024)
DOI: 10.1002/aelm.202300624, (FFLEXCOM (D020))
Hot electron transistors (HETs) represent an exciting frontier in semiconductor technology, holding the promise of high-speed and high-frequency electronics. With the exploration of two-dimensional materials such as graphene and new device architectures, HETs are poised to revolutionize the landscape of modern electronics. This study highlights a novel HET structure with a record output current density of 800 A/cm² and a high current gain α, fabricated using a scalable fabrication approach. The HET structure comprises two-dimensional hexagonal boron nitride (hBN) and graphene layers wet transferred to a germanium substrate. The combination of these materials results in exceptional performance, particularly in terms of the highly saturated output current density. The scalable fabrication scheme used to produce the HET opens up opportunities for large-scale manufacturing. This breakthrough in HET technology holds promise for advanced electronic applications, offering high current capabilities in a practical and manufacturable device.
(53) Asymmetric-Coupled Ge/SiGe Quantum Wells for Second Harmonic Generation at 7.1 THz in Integrated Waveguides: A Theoretical Study
E. Talamas Simola, M. Ortolani, L. Di Gaspare, G. Capellini, M. De Seta, M. Virgilio
Nanophotonics 13(10), 1781 (2024)
DOI: 10.1515/nanoph-2023-0697, (FLASH)
We present a theoretical investigation of guided second harmonic generation at THz frequencies in SiGe waveguides embedding n-type Ge/SiGe asymmetric coupled quantum wells to engineer a giant second order nonlinear susceptibility. A characteristic of the chosen material system is the existence of large off-diagonal elements in the χ2 tensor, coupling optical modes with different polarization. To account for this effect, we generalize the coupled-mode theory, proposing a theoretical model suitable for concurrently resolving every second harmonic generation interaction among guide-sustained modes, regardless of which χ2 tensor elements it originates from. Furthermore, we exploit the presence of off-diagonal χ2 elements and the peculiarity of the SiGe material system to develop a simple and novel approach to achieve perfect phase matching without requiring any fabrication process. For a realistic design of the quantum heterostructure we estimate second order nonlinear susceptibility peak values of ∼7 and ∼1.4 × 105 pm/V for diagonal and off diagonal χ2 elements, respectively. Embedding such heterostructure in Ge-rich SiGe waveguides of thicknesses of the order of 10–15 μm leads to second harmonic generation efficiencies comprised between 0.2 and 2 %, depending on the choice of device parameters. As a case study, we focus on the technologically relevant frequency of 7.1 THz, yet the results we report may be extended to the whole 5–20 THz range.
(54) On the Asymmetry of Resistive Switching Transitions
G. Vinuesa, H. Garcia, E. Perez, Ch. Wenger, I. Iniguez-de-la-Torre, T. Gonzalez, S. Duenas, H. Castan,
Electronics (MDPI) 13(13), 2639 (2024)
DOI: 10.3390/electronics13132639, (KI-IoT)
In this study, the resistive switching phenomena in TiN/Ti/HfO2/Ti metal–insulator–metal stacks is investigated, mainly focusing on the analysis of set and reset transitions. The electrical measurements in a wide temperature range reveal that the switching transitions require less voltage (and thus, less energy) as temperature rises, with the reset process being much more temperature sensitive. The main conduction mechanism in both resistance states is Space-charge-limited Conduction, but the high conductivity state also shows Schottky emission, explaining its temperature dependence. Moreover, the temporal evolution of these transitions reveals clear differences between them, as their current transient response is completely different. While the set is sudden, the reset process development is clearly non-linear, closely resembling a sigmoid function. This asymmetry between switching processes is of extreme importance in the manipulation and control of the multi-level characteristics and has clear implications in the possible applications of resistive switching devices in neuromorphic computing.
(55) Effect of the Temperature on the Performance and Dynamic Behaviour of HfO2-based RRAM Devices
G. Vinuesa, H. Garcia, S. Dueñas, H. Castan, I. Iñiguez-de-la-Torre, T. Gonzalez, K.D.S. Reddy, M. Uhlmann, Ch. Wenger, E. Perez
Proc. 245th ECS Meeting: Advancing Solid State & Electrochemical Science & Technology (ECS Meeting 2024), abstr. book 1297 (2024)
DOI: 10.1149/MA2024-01211297mtgabs, (KI-IoT)
(56) Cycle-Accurate FPGA Emulation of RRAM Crossbar Array: Efficient Device and Variability Modeling with Energy Consumption Assessment
J. Wen, F. Vargas, F. Zhu, D. Reiser, A. Baroni, M. Fritscher, E. Perez, M. Reichenbach, Ch. Wenger, M. Krstic
Proc. 25th IEEE Latin-American Test Symposium (LATS 2024), (2024)
DOI: 10.1109/LATS62223.2024.10534601, (6G-RIC)
(57) Towards Reliable and Energy-Efficient RRAM based Discrete Fourier Transform Accelerator
J. Wen, A. Baroni, E. Perez, M. Uhlmann, M. Fritscher, K. KrishneGowda, M. Ulbricht, Ch. Wenger, M. Krstic
Proc. 27th Design, Automation and Test in Europe (DATE 2024), (2024)
(6G-RIC)
(58) Thin and Locally Dislocation-Free SiGe Virtual Substrate Fabrication by Lateral Selective Growth
Y. Yamamoto, W.-C. Wen, M.A. Schubert, A.A. Corley-Wiciak, S. Sugawa, Y. Ito, R. Yokogawa, H. Han, R. Loo, A. Ogura, B. Tillack
Japanese Journal of Applied Physics 63(2), 02SP53 (2024)
DOI: 10.35848/1347-4065/ad189d
Locally dislocation-free SiGe-on-insulator (SGOI) is fabricated by chemical vapor deposition. Lateral selective SiGe growth of ~30%, ~45% and ~55% is performed around ~1 µm square Si(001) pillar located under the center of a 6.3 µm square SiO2 on Si-on-insulator substrate which is formed by H2-HCl vapor phase etching. The selective SiGe is deposited by H2-SiH2Cl2-GeH4-HCl. In the deposited SiGe layer, tensile strain is observed by top-view. The degree of strain is slightly increased at the corner of the SiGe. The tensile strain is caused by the partial compressive strain of SiGe in lateral direction and thermal expansion difference between Si and SiGe. Slightly higher Ge incorporation is observed in higher tensile strain region. At the peaks formed between the facets of growth front, Ge incorporation is reduced. These phenomena are pronounced for SiGe with higher Ge contents. Dislocation-free SGOI is formed along <010> from the Si pillar by lateral aspect-ratio-trapping.
(59) The Interplay between Strain, Sn Content, and Temperature on Spatially-Dependent Bandgap in Ge1-xSnx Microdisks
I. Zaitsev, A.A. Corley-Wiciak, C. Corley-Wiciak, M.H. Zoellner, C. Richter, E. Zatterin, M. Virgilio, Beatriz Martín-García, D. Spirito, C.L. Manganelli
Physica Status Solidi - Rapid Research Letters 18(3), 2300348 (2024)
DOI: 10.1002/pssr.202300348
Germanium-tin microdisks are promising structures for CMOS-compatible lasing. Their emission properties depend on Sn concentration, strain, and operating temperature. Critically, the band structure of the alloy varies along the disk due to the different lattice deformation associated with the mechanical constraints in the microstructures. We report an experimental and numerical study of Ge1-xSnx microdisk with Sn concentration between 8.5 and 14 at.%. Combining finite element method calculations, micro-Raman spectroscopy and X-ray diffraction spectroscopy enables a comprehensive understanding of mechanical deformation, where computational predictions are experimentally validated, leading to a robust model and insight into the strain landscape. Through micro-photo-luminescence experiments, the temperature dependence of the band gap of Ge1-xSnx is parametrized using the Varshni formula with respect to strain and Sn content. These results are the input for a spatially-dependent band structure calculation based on the deformation potential theory. We observe that Sn content and temperature have comparable effects on the bandgap, yielding a decrease of more than 20 meV for an increase of 1 at.% or 100 K, respectively. We also find that the strain gradient impacts the band structure in the whole volume of the microdisk. These findings correlate structural properties to the emission wavelength and spectral width of Ge1-xSnx microdisk lasers, thus demonstrating the importance of material-related consideration on the design of optoelectronic microstructures.
C. Acal, D. Maldonado, A. Cantudo, M.B. González, F. Jiménez-Molinos, F. Campabadal, J.B. Roldán
Nanoscale 16(22), 10812 (2024)
DOI: 10.1039/D4NR01237B
A new statistical analysis is presented to assess cycle-to-cycle variability in resistive memories. This method employs two-dimensional (2D) distributions of parameters to analyse both set and reset voltages and currents, coupled with a 2D coefficient of variation (CV). This 2D methodology significantly enhances the analysis, providing a more thorough and comprehensive understanding of the data compared to conventional one-dimensional methods. Resistive switching (RS) data from two different technologies based on hafnium oxide are used in the variability study. The 2D CV allows a more compact assessment of technology suitability for applications such as non-volatile memories, neuromorphic computing and random number generation circuits.
(2) Advanced Recovery and Enhanced Humidity Tolerance of CNTs Gas Sensor using a Filament Heater
I. Ahmad, D. Lee, M. Chae, H.-D. Kim
Chemical Engineering Journal 496, 154014 (2024)
DOI: 10.1016/j.cej.2024.154014
Carbon nanotubes (CNTs) gas sensors have slow recovery times and are susceptible to dampness, impacting their responsiveness. Different energy sources, like heaters, have been utilized to tackle this problem, but they are high in energy consumption and have size limitations. This study introduces a conductive filament-based heater (CFH) designed to enhance the recovery time and humidity tolerance of CNTs gas sensors, which is simply configured perpendicular to the CNTs gas sensor. As a result, when using CFH, we observed that after a gas sensing, it returns to its initial state within 1 ms, which is 35x105 times faster a recovery speed than that of without a heater, and only 475 nJ of energy was consumed for recovery. In addition, in the evaluation of humidity on the CFH-embedded CNTs gas sensor, the humidity had the least effect on the sensor using a CFH with heating voltage of 0.7 V ranged from 0.2 to 0.7 V, which was caused by the highest temperature and lowest absorption rate of water molecules on the surface of CNTs. The results suggest that the proposed CFH is an adaptable technique that can be used with various gas sensors including CNTs gas sensors that need an additional energy source.
(3) Advances in MXene-based Synaptic Devices and Sensors: Review
M. Ali, D. Lee, M. Chae, I. Ahmad, H.-D. Kim
Materials Today Physics 45, 101456 (2024)
DOI: 10.1016/j.mtphys.2024.101456
This paper reviews the research on MXene, a two-dimensional material that has the potential to be used in next-generation electronic devices. Due to its unique electrical, mechanical, and surface properties, MXene has emerged as a promising candidate for the development of memristor devices and gas sensors. The paper provides an extensive overview of the state-of-the-art in MXene-based memristors and gas sensors, covering topics such as synthesis techniques, intrinsic properties, and a wide range of potential applications. In particular, the tunability of MXene and its ability to modify its electrical properties through surface functionalization are emphasized, allowing for precise control over device performance.
(4) Adhesive-Free Bonding for Hetero-Integration of InP based Coupons Micro-Transfer Printed on SiO2 into Complementary Metal-Oxide-Semiconductor Backend for Si Photonics Application on 8” Wafer Platform
K. Anand, P. Steglich, J. Kreissl, C.A. Chavarin, D. Spirito, M. Franck, G. Lecci, I. Costina, N. Herfurth, J. Katzer, Ch. Mai, A. Becker, J.P. Reithmaier, L. Zimmermann, A. Mai
Thin Solid Films 799, 140399 (2024)
DOI: 10.1016/j.tsf.2024.140399, (FMD)
Micro-Transfer printing (µTP) is a promising technique for hetero-integration of III-V materials into Si-based photonic platforms. To enhance the print yield by increasing the adhesion between the III-V material and Si or SiO2 surface, an adhesion promoter like Benzocyclobutene is typically used as interlayer. In this work, we demonstrate µTP of InP based coupons on SiO2 interlayer without any adhesive interlayer and investigate the mechanism of adhesive free bonding. Source coupons are InP-based coupon stacks on a sacrificial layer that is removed by a chemical wet etch with FeCl3. For the target we fabricated amorphous-Si waveguides on 8" wafer encapsulated by a High Density Plasma SiO2 which was planarized by a chemical mechanical polishing procedure. We used O2 plasma to activate both source and target to increase adhesion between coupon and substrate. To get a better understanding of the bonding mechanism we applied several surface characterization methods. Root mean square roughness of InP and SiO2 was measured by atomic force microscopy before and after plasma activation. The step height of the micro-transfer printed source coupon on the target wafer is estimated by optical step profiler. We used Raman peak position mappings of InP to analyze possible strain and contact angle measurements on SiO2, before and after plasma activation to observe a change in the hydrophilicity of the surface. X-ray Photoelectron Spectroscopy analysis was used to characterize the surface energy states of P2p, In3d, O1s for InP source and Si2p, O1s for SiO2 target. Our results demonstrate direct bonding of InP coupons by means of µTP without the need of a strain-compensation layer. In this way, a promising route towards Complementary Metal-Oxide-Semiconductor compatible use of µTP for the hetero-integration of InP is provided.
(5) Adhesive-Free Bonding for Hetero-Integration of InP based Coupons Micro-Transfer Printed on SiO2 into Complementary Metal-Oxide-Semiconductor Backend for Si Photonics Application on 8” Wafer Platform
K. Anand, P. Steglich, J. Kreissl, C.A. Chavarin, D. Spirito, M. Franck, G. Lecci, I. Costina, N. Herfurth, J. Katzer, Ch. Mai, A. Becker, J.P. Reithmaier, L. Zimmermann, A. Mai
Thin Solid Films 799, 140399 (2024)
DOI: 10.1016/j.tsf.2024.140399, (PEARLS)
Micro-Transfer printing (µTP) is a promising technique for hetero-integration of III-V materials into Si-based photonic platforms. To enhance the print yield by increasing the adhesion between the III-V material and Si or SiO2 surface, an adhesion promoter like Benzocyclobutene is typically used as interlayer. In this work, we demonstrate µTP of InP based coupons on SiO2 interlayer without any adhesive interlayer and investigate the mechanism of adhesive free bonding. Source coupons are InP-based coupon stacks on a sacrificial layer that is removed by a chemical wet etch with FeCl3. For the target we fabricated amorphous-Si waveguides on 8" wafer encapsulated by a High Density Plasma SiO2 which was planarized by a chemical mechanical polishing procedure. We used O2 plasma to activate both source and target to increase adhesion between coupon and substrate. To get a better understanding of the bonding mechanism we applied several surface characterization methods. Root mean square roughness of InP and SiO2 was measured by atomic force microscopy before and after plasma activation. The step height of the micro-transfer printed source coupon on the target wafer is estimated by optical step profiler. We used Raman peak position mappings of InP to analyze possible strain and contact angle measurements on SiO2, before and after plasma activation to observe a change in the hydrophilicity of the surface. X-ray Photoelectron Spectroscopy analysis was used to characterize the surface energy states of P2p, In3d, O1s for InP source and Si2p, O1s for SiO2 target. Our results demonstrate direct bonding of InP coupons by means of µTP without the need of a strain-compensation layer. In this way, a promising route towards Complementary Metal-Oxide-Semiconductor compatible use of µTP for the hetero-integration of InP is provided.
(6) Ultrastrong Coupling of Si1−xGex Parabolic Quantum Wells to Terahertz Microcavities
F. Berkmann, T. Venanz, L. Baldassarre, E. Campagna, E. Talamas-Simola, L. Di Gaspare, C. Corley-Wiciak, G.Capellini,G. Nicotra, G. Sfuncia, A. Notargiacomo, E. Giovine, S. Cibella, M. Virgilio, G. Scalari, M. De Seta, M. Ortolani
ACS Photonics 11(7), 2776 (2024)
DOI: 10.1021/acsphotonics.4c00641, (IHP- Roma Tre University Joint Lab)
Control and manipulation of quantum states by light are increasingly important for both fundamental research and applications. This can be achieved through the strong coupling between light and semiconductor devices, typically observed at THz frequencies in 2D electron gases embedded in lithographic optical cavities. Here, we explore the possibility of achieving ultrastrong coupling between conduction sub-band states in Si1–xGex heterostructures and THz cavity photons fabricated with a potentially silicon-CMOS-compliant process. We developed Si1–xGex parabolic quantum wells with a transition at ω0 = 3.1 THz and hybrid metal-plasmonic THz patch-antenna microcavities resonating between 2 and 5 THz depending on the antenna length. In this first demonstration, we achieved anticrossing around 3 THz with spectroscopically measured Rabi frequency ΩR ≃ 0.7 THz (ΩR/ω0 ≃ 0.2, i.e., ultrastrong coupling). The present group-IV semiconductor material platform can be extended to the 5–12 THz range, where these semiconductors are transparent, as opposed to the III–V compound semiconductors plagued by strong THz optical phonon absorption. Moreover, the intersubband transition in parabolic quantum wells hosted by the nonpolar Si1–xGex crystal lattice is robust against carrier density and temperature variations, making the strength of the coupling only weakly temperature-dependent from 10 to 300 K. These results pave the way for the employment of the Si1–xGex material platform to perform fundamental research in ultrastrong light–matter coupling, fully exploiting the plasmonic character of the cavity mirror, as well as in ultrafast modulators and saturable absorbers for THz laser research.
(7) High Quality CMOS Ccompatible N-Type SiGe Parabolic Quantum Wells for Intersubband Photonics at 2.5-5 THz
E. Campagna, E. Talamas Simola, T. Venanzi, F. Berkmann, C. Corley-Wiciack, G. Nicotra, L. Baldassarre, G. Capellini, L. Di Gaspare, M. Virgilio, M. Ortolani, M. De Seta
Nanophotonics 13(10), 1793 (2024)
DOI: 10.1515/nanoph-2023-0704, (FLASH)
A parabolic potential that confines charge carriers along the growth direction of quantum wells semiconductor systems is characterized by a single resonance frequency, associated to intersubband transitions. Motivated by fascinating quantum optics applications leveraging on this property, we use the technologically relevant SiGe material system to design, grow, and characterize n-type doped parabolic quantum wells realized by continuously grading Ge-rich Si1−x Ge x alloys, deposited on silicon wafers. An extensive structural analysis highlights the capability of the ultra-high-vacuum chemical vapor deposition technique here used to precisely control the quadratic confining potential and the target doping profile. The absorption spectrum, measured by means of Fourier transform infrared spectroscopy, revealed a single peak with a full width at half maximum at low and room temperature of about 2 and 5 meV, respectively, associated to degenerate intersubband transitions. The energy of the absorption resonance scales with the inverse of the well width, covering the 2.5–5 THz spectral range, and is almost independent of temperature and doping, as predicted for a parabolic confining potential. On the basis of these results, we discuss the perspective observation of THz strong light–matter coupling in this silicon compatible material system, leveraging on intersubband transitions embedded in all-semiconductor microcavities.
(8) Optimization of the Metal Deposition Process for the Accurate Estimation of Low Metal-Graphene Contact-Resistance
D. Capista, R. Lukose, F. Majnoon, M. Lisker, Ch. Wenger, M. Lukosius
Proc. 47th International ICT and Electronics Convention (MIPRO 2024), 1561 (2024)
DOI: 10.1109/MIPRO60963.2024.10569895, (2D-EPL)
(9) SWCNT-Si Photodetector with Voltage-Dependent Active Surface
D. Capista, L. Lozzi, A. Di Bartolomeo, F. Giubileo, N. Martucciello, M. Passacantando
Nano Express 5(1), 015004 (2024)
DOI: 10.1088/2632-959X/ad12d9
New works on Carbon Nanotubes-Silicon MIS heterostructures showed that the presence of thickness inhomogeneities in the insulating layer across the device can be exploited increase its functionalities. In this work, we report the fabrication and the characterization of a device consisting of a Single-Walled Carbon Nanotube (SWCNT) film onto an n-type silicon substrate where the nitride interlayer between the nanotubes and the silicon has been intentionally etched to obtain different thickness. Three different silicon nitride thicknesses allow the formation of three regions, inside the same device, each with different photocurrents and responsivity behaviors. We show that by selecting specific biases, the photoresponse of the regions can be switched on and off. This peculiar behavior allows the device to be used as a photodetector with a voltage dependent active surface. Scanning photo response imaging of the device surface, performed at different biases highlight this behavior.
(10) Influence of En-APTAS Membrane on NO Gas Selectivity of HfO2-based Memristor Gas Sensors
M. Chae, D. Lee, H.-D. Kim
Japanese Journal of Applied Physics 63(3), 03SP07 (2024)
DOI: 10.35848/1347-4065/ad202d
Memristor-based gas sensors (gas sensor + memristor, gasistor) have gained popularity due to their high response characteristics and ability to operate at RT. In this paper, N-[3-(Trimethoxysilyl)propyl]ethylenediamine (en-APTAS), a commonly used membrane for NOx gas sensors, is applied in the gasistor with carbon nanotubes (CNTs)-top electrode (TE). As a result, we have demonstrated the response time was reduced by 104 s, and the response to 10 ppm Nitric oxide (NO) gas increased to 3.69, indicating an enhanced sensing property in a range of 10–50 ppm. Furthermore, when decorated with the proposed en-APTAS, the gasistor with CNTs-TE demonstrated a 3.76-fold increase in response to NO gas compared to NO2 gas, demonstrating remarkable selectivity. These improved features are attributed to the high adsorption energy of en-APTAS and the large kinetic diameter of NO2. The research proposal will be a foundational stage towards attaining selectivity in other gasistor studies.
(11) Low-Power Consumption IGZO Memristor-Based Gas Sensor Embedded in an Internet of Things Monitoring System for Isopropanol Alcohol Gas
M. Chae, D. Lee, H.-D. Kim
Micromachines 15(1), 77 (2024)
DOI: 10.3390/mi15010077
Low-power-consumption gas sensors are crucial for diverse applications, including environmental monitoring and portable Internet of Things (IoT) systems. However, the desorption and adsorption characteristics of conventional metal oxide-based gas sensors require supplementary equipment, such as heaters, which is not optimal for low-power IoT monitoring systems. Memristor-based sensors (gasistors) have been investigated as innovative gas sensors owing to their advantages, including high response, low power consumption, and room-temperature (RT) operation. Based on IGZO, the proposed isopropanol alcohol (IPA) gas sensor demonstrates a detection speed of 105 s and a high response of 55.15 for 50 ppm of IPA gas at RT. Moreover, rapid recovery to the initial state was achievable in 50 μs using pulsed voltage and without gas purging. Finally, a low-power circuit module was integrated for wireless signal transmission and processing to ensure IoT compatibility. The stability of sensing results from gasistors based on IGZO has been demonstrated, even when integrated into IoT systems. This enables energy-efficient gas analysis and real-time monitoring at ~0.34 mW, supporting recovery via pulse bias. This research offers practical insights into IoT gas detection, presenting a wireless sensing system for sensitive, low-powered sensors.
(12) Room Temperature Lattice Thermal Conductivity of GeSn Alloys
O. Concepción, J. Tiscareño-Ramírez, A.A. Chimienti, T. Classen, A.A. Corley-Wiciak, A. Tomadin, D. Spirito, D. Pisignano, P. Graziosi, Z. Ikonic, Q.T. Zhao, D. Grützmacher, G. Capellini, S. Roddaro, M. Virgilio, D. Buca
ACS Applied Energy Materials 7(10), 4394 (2024)
DOI: 10.1021/acsaem.4c00275, (SiGeSn TE)
CMOS-compatible materials for efficient energy harvesters at temperatures characteristic for on-chip operation and body temperature are the key ingredients for sustainable green computing and ultralow power Internet of Things applications. In this context, the lattice thermal conductivity (κ) of new group IV semiconductors, namely Ge1–xSnx alloys, are investigated. Layers featuring Sn contents up to 14 at.% are epitaxially grown by state-of-the-art chemical-vapor deposition on Ge buffered Si wafers. An abrupt decrease of the lattice thermal conductivity (κ) from 55 W/(m·K) for Ge to 4 W/(m·K) for Ge0.88Sn0.12 alloys is measured electrically by the differential 3ω-method. The thermal conductivity was verified to be independent of the layer thickness for strained relaxed alloys and confirms the Sn dependence observed by optical methods previously. The experimental κ values in conjunction with numerical estimations of the charge transport properties, able to capture the complex physics of this quasi-direct bandgap material system, are used to evaluate the thermoelectric figure of merit ZT for n- and p-type GeSn epitaxial layers. The results highlight the high potential of single-crystal GeSn alloys to achieve similar energy harvest capability as already present in SiGe alloys but in the 20 °C–100 °C temperature range where Si-compatible semiconductors are not available. This opens the possibility of monolithically integrated thermoelectric on the CMOS platform.
(13) The Lattice Strain Distribution in GexSn1-x Micro-Disks Investigated at the Sub 100-nm Scale
C. Corley-Wiciak, A.A. Corley-Wiciak, M.H. Zoellner, F. Rovaris, E. Zatterin, G. Sfuncia, G. Nicotra, I. Zaitsev, C. L. Manganelli, D. Spirito, A. Marzegalli, T.U. Schulli, N. von den Driesch, D. Buca, F. Montalenti, C. Richter, G. Capellini
ECS Transactions 114(2), 145 (2024)
DOI: 10.1149/11402.0145ecst, (GeSn Laser II)
Experimental assessment of the strain tensor within a microstructure is challenging, especially for small mechanical deformations acting over submicron length scales. In this work, we fully characterize the spatial strain distribution within a suspended micro-disk laser made of Ge1-xSnx alloy, with fine resolution <200 nm. We employ Scanning X-ray Diffraction Microscopy, a model-free method based on synchrotron radiation, to directly obtain maps of all components of lattice strain and rotation, including the shear strains, finding them on a magnitude ~10-3. We correlate these small elastic deformations to structural defects and the relaxation of the three-dimensional microstructure, demonstrating the potential of an advanced X-ray microscopy technique for microelectronics.
(14) Thermal Expansion and Temperature Dependence of Raman Modes in Epitaxial Layers of Ge and Ge1-xSnx
A.A. Corley-Wiciak, D. Ryzhak, M.H. Zoellner, C.L. Manganelli, O. Concepción, O. Skibitzki, D. Grützmacher, D.Buca, G. Capellini, D. Spirito
Physical Review Materials 8(2), 023801 (2024)
DOI: 10.1103/PhysRevMaterials.8.023801, (GeSn Laser II)
Temperature dependence of vibrational modes in semiconductors depends on lattice thermal expansion and anharmonic phonon-phonon scattering. Evaluating the two contributions from experimental data is not straightforward, especially for epitaxial layers that present mechanical deformation and anisotropic lattice expansion. In this work, a temperature-dependent Raman study in epitaxial Ge and layers is presented. A model is introduced for the Raman mode energy shift as a function of temperature, comprising thermal expansion of the strained lattice and anharmonic corrections. With support of x-ray diffraction, the model is calibrated on experimental data of epitaxial Ge grown on Si and grown on Ge/Si, finding that the main difference between bulk and epitaxial layers is related to the anisotropic lattice expansion. The phonon anharmonicity and other parameters do not depend on dislocation defect density (in the range 7⋅106 - 4⋅108 cm^-2) nor on alloy composition in the range 5-14 at.%. The strain-shift coefficient for the main model of Ge and for the Ge-Ge vibrational mode of is weakly dependent on temperature and is around -500 . In , the composition-shift coefficient amounts to -100 , independent of temperature and strain.
(15) Fast Circuit Simulation of Memristive Crossbar Arrays with Bimodal Stochastic Synaptic Weights
N. Dersch, Ch. Roemer, E. Perez, Ch. Wenger, M. Schwarz, B. Iniguez, A. Kloes
Proc. IEEE Latin American Electron Devices Conference (LAEDC 2024), (2024)
DOI: 10.1109/LAEDC61552.2024.10555829, (KI-IoT)
(16) Deposition of Polymers on Titanium Nitride Electrodes
Y. Efremenko, A. Laroussi, A. Sengül, A.A. Corley-Wiciak, I.A. Fischer, V.M. Mirsky
Coatings (MDPI) 14(2), 215 (2024)
DOI: 10.3390/coatings14020215, (iCampus II)
An application of titanium nitride (TiN) as an electrode for electrochemical deposition or characterization requires the removing of an insulating layer from its surface. This process was studied and optimized, the conditions for complete removing of this layer by treatment with oxalic acid were formulated. The obtained TiN surfaces were used for deposition of various conducting and non-conducting polymers. Two different approaches were applied: (i) in-situ electrochemical synthesis of the main classes of conducting polymers including polyaniline, polypyrrole, polythiophene and few of their derivates, (ii) electrostatically driven Layer-by-Layer (LbL) deposition of multilayers of oppositely charged polyelectrolytes. The deposited polymers were characterized by electrochemical methods. Electrochemical properties of deposited conducting polymers and their deposition to the TiN surface were comparable to that to the metallic electrodes. The LbL deposited polymer films demonstrated strong influence of the charge of the last deposited polymer on the redox reaction of ferri/ferrocyanide thus confirming charge alteration with each deposited polymer layer. The studied deposition technologies can be used for surface modification of TiN surface required in the applications of this material in chemical sensors and other devices.
(17) Evidence of Correlation between Membrane Phase Transition and Clonogenicity in Dehydrating Acinetobacter baumannii: A Combined Micro-Raman and AFM Study
E. Fardelli, M. Di Gioacchino, M. Lucidi, G. Capecchi, F. Bruni, A. Sodo, P. Visca, G. Capellini
The Journal of Physical Chemistry B 128(28), 6806 (2024)
DOI: 10.1021/acs.jpcb.4c01246, (IHP- Roma Tre University Joint Lab)
The Gram-negative bacterium Acinetobacter baumannii is one of the most resilient multidrug-resistant pathogens in hospitals. Among Gram-negative bacteria, it is particularly resistant to dehydration (anhydrobiosis), and this feature allows A. baumannii to persist in hospital environments for long periods, subjected to unfavorable conditions. We leverage the combination of μ-Raman spectroscopy and atomic force microscopy (AFM) to investigate the anhydrobiotic mechanisms in A. baumannii cells by monitoring the membrane (both inner and outer membranes) properties of four A. baumannii strains during a 16-week dehydration period and in response to temperature excursions. We noted that the membranes of A. baumannii remained intact during the dehydration period despite undergoing a liquid-crystal-to-gel-phase transition, accompanied by changes in the mechanical properties of the membrane. This was evident from the AFM images, which showed the morphology of the bacterial cells alongside modifications of their superficial mechanical properties, and from the alteration in the intensity ratio of μ-Raman features linked to the CH3 and CH2 symmetric stretching modes. Furthermore, employing a universal power law revealed a significant correlation between this ratio and bacterial fitness across all tested strains. Additionally, we subjected dry A. baumannii to a temperature-dependent experiment, the results of which supported the correlation between the Raman ratio and culturability, demonstrating that the phase transition becomes irreversible when A. baumannii cells undergo different temperature cycles. Besides the relevance to the present study, we argue that μ-Raman can be used as a powerful nondestructive tool to assess the health status of bacterial cells based on membrane properties with a relatively high throughput.
(18) Area-Efficient Digital Design using RRAM-CMOS Standardcells
M. Fritscher, M. Uhlmann, P. Ostrovskyy, D. Reiser, J.-C. Chen, M.A. Schubert, C. Schulze, G. Kahmen, D. Fey, M. Reichenbach, M. Kristic, Ch. Wenger
Proc. IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2024), 81 (2024)
DOI: 10.1109/ISVLSI61997.2024.00026, (iCampus II)
(19) Area-Efficient Digital Design using RRAM-CMOS Standardcells
M. Fritscher, M. Uhlmann, P. Ostrovskyy, D. Reiser, J.-C. Chen, M.A. Schubert, C. Schulze, G. Kahmen, D. Fey, M. Reichenbach, M. Kristic, Ch. Wenger
Proc. IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2024), 81 (2024)
DOI: 10.1109/ISVLSI61997.2024.00026, (6G-RIC)
(20) Area-Efficient Digital Design using RRAM-CMOS Standardcells
M. Fritscher, M. Uhlmann, P. Ostrovskyy, D. Reiser, J.-C. Chen, M.A. Schubert, C. Schulze, G. Kahmen, D. Fey, M. Reichenbach, M. Kristic, Ch. Wenger
Proc. IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2024), 81 (2024)
DOI: 10.1109/ISVLSI61997.2024.00026, (KI-IoT)
(21) From Device to Application - Integrating RRAM Accelerator Blocks into Large AI Systems
M. Fritscher, Ch. Wenger, M. Krstic
Proc. IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2024), 592 (2024)
DOI: 10.1109/ISVLSI61997.2024.00111, (iCampus II)
(22) From Device to Application - Integrating RRAM Accelerator Blocks into Large AI Systems
M. Fritscher, Ch. Wenger, M. Krstic
Proc. IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2024), 592 (2024)
DOI: 10.1109/ISVLSI61997.2024.00111, (6G-RIC)
(23) Improving Epitaxial Growth of γ-Al2O3 Films via Sc2O3/Y2O3 Oxide Buffers
S. Gougam, M.A. Schubert, D. Stolarek, S.B. Thapa, M.H. Zoellner
Advanced Materials Interfaces 221(12), 2400228 (2024)
DOI: 10.1002/pssa.202400228, (GaN HEMT support)
Heteroepitaxial growth of γ-Al2O3 on Sc2O3/Y2O3/Si (111) is achieved with oxygen plasma-assisted molecular beam epitaxy in order to prevent polycrystalline grain boundary formation caused by lattice mismatch. Substrate temperature as well as oxygen flow are adjusted to optimize epitaxial growth conditions around 715–760 °C and 1.9 sccm, respectively. Epitaxial growth is monitored in situ by reflection high-energy diffraction, while surface morphology is studied by scanning electron microscopy ex-situ. X-ray diffraction indicates epitaxial out-of-plane 111 orientation with oxygen flow above 0.6 sccm. However, transmission electron microscopy shows stacking fault formation for high oxygen flows. Finally, nanobeam electron diffraction confirms Smrčok model of a spinel-like γ-Al2O3 crystal structure.
(24) Characterization of Drop Cast as Strategy for the Biofunctionalization of Plasmonic Sensors Based on Highly Doped Ge-Based
E. Hardt, R. Varricchio, C.A. Chavarin, O. Skibitzki, A. di Masi, G. Capellini
Proc. iCampus Cottbus Conference (iCCC 2024), 191 (2024)
(iCampus II)
(25) Investigation of Defect Formation in Monolithic Integrated GaP Islands on Si Nanotips Wafer
I. Häusler, I. Häusler, R. Řepa, A. Hammud, O. Skibitzki, F. Hatami
Electronics 13(15), 2945 (2024)
DOI: 10.3390/electronics13152945, (NHEQuanLEA)
The monolithic integration of gallium phosphide (GaP), with its green band gap, high refractive index, large optical non-linearity, and broad transmission range on silicon (Si) substrates, is crucial for Si-based optoelectronics and integrated photonics. However, material mismatches, including thermal expansion mismatch and polar/non-polar interfaces, cause defects such as stacking faults, microtwins, and anti-phase domains in GaP, adversely affecting its electronic properties. Our paper presents a structural and defect analysis using scanning transmission electron microscopy, high-resolution transmission electron microscopy, and scanning nanobeam electron diffraction of epitaxial GaP islands grown on Si nanotips embedded in SiO2. The Si nanotips were fabricated on 200 mm n-type Si (001) wafers using a CMOS-compatible pilot line, and GaP islands were grown selectively on the tips via gas-source molecular-beam epitaxy. Two sets of samples were investigated: GaP islands nucleated on open Si nanotips and islands nucleated within self-organized nanocavities on top of the nanotips. Our results reveal that in both cases, the GaP islands align with the Si lattice without dislocations due to lattice mismatch. Defects in GaP islands are limited to microtwins and stacking faults. When GaP nucleates in the nanocavities, most defects are trapped, resulting in defect-free GaP islands. Our findings demonstrate an effective approach to mitigate defects in epitaxial GaP on Si nanotip wafers fabricated by CMOS-compatible processes.
(26) Integration Concept of Plasmonic TiN Nanohole Arrays in a 200 mm BiCMOS Si Technology for Refractive Index Sensor Applications
J. Jose, Ch. Mai, S. Reiter, Ch. Wenger, I.A. Fischer
Proc. iCampus Cottbus Conference (iCCC 2024), 96 (2024)
DOI: 10.5162/iCCC2024/7.2, (iCampus)
(27) Selective Growth of GaP Crystals on CMOS-Compatible Si Nanotips Wafer by Gas Source Molecular Beam Epitaxy
N. Kafi, S. Kang, C. Golz, A. Rodrigues-Weisensee, L. Persichetti, D. Ryzhak, G. Capellini, D. Spirito, M. Schmidbauer, A. Kwasniewski, C. Netzel, O. Skibitzki, F. Hatami
Crystal Growth & Design 24(7), 2724 (2024)
DOI: 10.1021/acs.cgd.3c01337, (NHEQuanLEA)
Gallium phosphide (GaP) is a III–V semiconductor with remarkable optoelectronic properties, and it has almost the same lattice constant as silicon (Si). However, to date, the monolithic and large-scale integration of GaP devices with silicon remains challenging. In this study, we present a nanoheteroepitaxy approach using gas-source molecular-beam epitaxy for selective growth of GaP islands on Si nanotips, which were fabricated using complementary metal–oxide semiconductor (CMOS) technology on a 200 mm n-type Si(001) wafer. Our results show that GaP islands with sizes on the order of hundreds of nanometers can be successfully grown on CMOS-compatible wafers. These islands exhibit a zinc-blende phase and possess optoelectronic properties similar to those of a high-quality epitaxial GaP layer. This result marks a notable advancement in the seamless integration of GaP-based devices with high scalability into Si nanotechnology and integrated optoelectronics.
(28) Controlled Integration of InP Nanoislands with CMOS-Compatible Si using Nanoheteroepitaxy Approach
A. Kamath, D. Ryzhak, A. Rodrigues, N. Kafi, C. Golz, D. Spirito, O. Skibitzki, L. Persichetti, M. Schmidbauer, F. Hatami
Materials Science in Semiconductor Processing 182, 108585 (2024)
DOI: 10.1016/j.mssp.2024.108585, (NHEQuanLEA)
Indium phosphide (InP) nanoislands are grown on pre-patterned Silicon (001) nanotip substrate using gas-source molecular-beam epitaxy via nanoheteroepitaxy approach. The study explores the critical role of growth temperature in achieving selectivity, governed by diffusion length. Our study reveals that temperatures of about 480 °C and lower, lead to parasitic growth, while temperatures about 540 °C with an indium growth rate of about 0.7 Å.s−1 and phosphine flux of 4 sccm inhibit selective growth. The establishment of an optimal temperature window for selective InP growth is demonstrated for a temperature range of 490 °C to 530 °C. Comprehensive structural and optical analyses using atomic force microscopy, Raman spectroscopy, x-ray diffraction, and photoluminescence confirm a zincblende structure of indium phosphide with fully relaxed islands. These results demonstrate the capability to precisely tailor the position of InP nanoislands through a noncatalytic nanoheteroepitaxy approach, marking a crucial advancement in integrating InP nanoisland arrays on silicon devices.
(29) Enhanced Optical and Electrical Properties of Indium Tin Oxide for Solar Cell Applications via Post-Microwave Treatment
T. Kim, M. Chae, D. Lee, H.-D. Kim
Optical Materials 149, 115093 (2024)
DOI: 10.1016/j.optmat.2024.115093
The method to enhance current density in silicon heterojunction (SHJ) solar cells involves increasing surface roughness through higher temperature during indium thin oxide (ITO) deposition. Although cost-effective, the optoelectrical properties require further enhancement for solar cell application. Thus, post-heat treatment is necessary to improve their optoelectrical properties. Microwave treatment (MWT) emerges as a promising way to selectively generate heat in ITO briefly. Therefore, we propose a MWT process to enhance optoelectrical properties. After depositing ITO at 500 °C and then MWT, the average transmittance is over 98.7% in the visible range, with a sheet resistance of 81 Ω/□. Finally, the weighted reflectance was calculated using measured reflectance data to assess the applicability in solar cell applications. As a result, the calculation shows that a weighted reflectance value of 0.6% after MWT. These results indicate that MWT effectively enhances optoelectrical properties of ITO, which are essential for the development of solar cell applications.
(30) Experimental Determination of Si Self-Interstitial Emission During Oxide Precipitation in Czochralski Silicon
G. Kissinger, D. Kot, A. Sattler
ECS Journal of Solid State Science and Technology 13(8), 083005 (2024)
DOI: 10.1149/2162-8777/ad670d, (Future Silicon Wafers)
We used the method of Torigoe and Ono [J. Appl. Phys., 121, 215103 (2017)] to investigate the kinetics of β, the number of self-interstitials emitted per precipitated oxygen atom, during oxide precipitation in Czochralski silicon. For this purpose, we used pp- epitaxial wafers with a buried highly B-doped epitaxial layer which were annealed with and without thermal pre-treatments at 950 °C. From the results we conclude that in the initial phase of oxide precipitation without thermal pre-treatment β is very high before it drops to low values. With a thermal pre-treatment at 800 °C for 2 h, the initial value of β is somewhat lower before the drop also occurs. If a nucleation anneal is carried out before the thermal treatment at 950 °C the β values are low from the beginning. All of these results confirm our previously published theoretical predictions experimentally. This work also shows that the crystal pulling process can affect the initial β value because grown-in oxide precipitate nuclei can reduce their strain by vacancy absorption. Therefore, high vacancy supersaturation during crystal cooling while oxide precipitate nucleate would lead to somewhat lower initial β values.
(31) Experimental Determination of Si Self-Interstitial Emission During Oxide Precipitation in Czochralski Silicon
G. Kissinger, D. Kot, A. Sattler
ECS Journal of Solid State Science and Technology 13(8), 083005 (2024)
DOI: 10.1149/2162-8777/ad670d
We used the method of Torigoe and Ono [J. Appl. Phys., 121, 215103 (2017)] to investigate the kinetics of β, the number of self-interstitials emitted per precipitated oxygen atom, during oxide precipitation in Czochralski silicon. For this purpose, we used pp- epitaxial wafers with a buried highly B-doped epitaxial layer which were annealed with and without thermal pre-treatments at 950°C. From the results we conclude that in the initial phase of oxide precipitation without thermal pretreatment β is very high before it drops to low values. With a thermal pre-treatment at 800°C for 2 h, the initial value of β is somewhat lower before the drop also occurs. If a nucleation anneal is carried out before the thermal treatment at 950°C the β values are low from the beginning. All of these results confirm our previously published theoretical predictions experimentally. This work also shows that the crystal pulling process can affect the initial β value because grown-in oxide precipitate nuclei can reduce their strain by vacancy absorption. Therefore, high vacancy supersaturation during crystal cooling while oxide precipitate nucleate would lead to somewhat lower initial β values.
(32) 200 mm Wafer Level Characterization at 2K of Si/SiGe Field-Effect Transistors
N.D. Komerički, P. Muster, F. Reichmann, T. Huckemann, D. Kaufmann, Y. Yamamoto, M. Lisker, W. Langheinrich, L.R. Schreiber, H. Bluhm, R. Quay
ECS Transactions 114(2), 133 (2024)
(QUASAR)
Si/SiGe has proven to be an excellent spin qubit platform, but industrial production of large-scale spin-qubit chips is missing. We use field effect transistors (FETs) to monitor and develop the quality of the fabrication process on 200 mm wafers at 2 K using a cryogenic wafer prober (CWP). This mass-characterization technique provides statistics on device performance. We observe variations in drain off current and gate threshold voltage of 213 FETs. These variations are related to bias voltage conditions during CWP cooldown, which differ from qubit chip cooldown. To address this, a new FET structure with an additional top gate is introduced, effectively suppressing unintentional charge accumulations. This eliminates drain off currents and improves homogeneity of FET characteristics at 2 K. Our results highlight significant impact of bias conditions during qubit chip cooldown, which, if not accounted for in the qubit chip design, can lead to incorrect conclusions when using CWP.
(33) Rational Design and Development of Room Temperature Hydrogen Sensors Compatible with CMOS Technology: A Necessary Step for the Coming Renewable Hydrogen Economy
J. Kosto, R. Tschammer, C. Morales, K. Henkel, C.A. Chavarin, I. Costina, M. Ratzke, Ch. Wenger, I.A. Fischer, J.I. Flege
Proc. iCampus Conference Cottbus (iCCC 2024), 182 (2024)
DOI: 10.5162/iCCC2024/P21
(34) Response Characteristic in Discontinuous NO Gas Flows for Boron Nitride Memristor Gas Sensor Devices
D. Lee, M. Chae, H.-D. Kim
Sensors and Actuators B: Chemical 401, 135063 (2024)
DOI: 10.1016/j.snb.2023.135063
Most NO gas sensors are evaluated using continuous NO gas, making it difficult to accurately recognize discontinuous gas flow. Here, to reveal the response characteristics in discontinuous gas flows, we investigated a response in various NO gas flows using a boron nitride-based memristor gas sensor. In conventional continuous gas flow, the response characteristic of 16% showed for 5 ppm NO gas, while in the pulse like gas injection with a width of 1 second and an interval of 1 second, the response only increased to 8.13%, meaning that it is difficult to estimate the overall environment of NO gas using only continuous gases, as well as showing that a host of data is needed for discontinuous gases. As a result, we found that a neural network model trained by continuous/discontinuous NO gas data accurately predicts the concentration of discontinuous NO gas with a low error of 5.6%.
(35) Graphene for Photonic Applications
M. Lukosius, R. Lukose, P.K. Dubey, A.I. Raju, M. Lisker, A. Mai, Ch. Wenger
Proc. 47th International ICT and Electronics Convention (MIPRO 2024), 1614 (2024)
DOI: 10.1109/MIPRO60963.2024.10569652, (2D-EPL)
(36) Towards a CMOS Compatible Refractive Index Sensor: Cointegration of TiN Nanohole Arrays and Ge Photodetectors in a 200 mm Wafer Silicon Technology
Ch. Mai, A. Peczek, A. Kroh, J. Jose, S. Reiter, Ch. Wenger, I.A. Fischer
Optics Express 32(17), 29099 (2024)
DOI: 10.1364/OE.530081, (iCampus)
In this work we present the monolithic integration of a TiN nanohole array and a Ge photodetector towards a CMOS compatible fabrication of a refractive index sensor in a 200 mm wafer silicon technology. We developed a technology process, which enables a fabrication with high yields of around 90 %. Ge photodetectors with a Ge layer thickness of 450 nm and an area of 1600 µm² (40 µm x 40 µm) show dark current densities of around 129 mA/cm² and responsivities of 0.114 A/W measured by top illumination (TE polarization; λ = 1310 nm; angle of incidence = 14 °) at a reverse bias of 1 V. Nanohole arrays were structured in a 150 nm thick TiN layer. They were integrated in the Back End of Line and placed spatially close to the Ge photodetectors. After the metallization, passivation and pad opening, the nanohole arrays were released with the help of an amorphous silicon stop layer. A significant impact of the TiN nanohole arrays on the optical behavior of the photodetector could be proven on wafer level. Photocurrent measurements by top illumination confirm a strong dependence of optical properties on the polarization of the incident light and the nanohole array design. We demonstrate very stable photocurrents on wafer level with a standard deviation of σ < 6 %.
(37) Influence of Stop and Gate Voltage on Resistive Switching of 1T1R HfO2-based Memristors, a Modeling and Variability Analysis
D. Maldonado, A. Cantudo, K.D.S. Reddy, S. Pechmann, M. Uhlmann, Ch. Wenger, J.B. Roldán, E. Pérez
Materials Science in Semiconductor Processing 182, 108726 (2024)
DOI: 10.1016/j.mssp.2024.108726, (KI-IoT)
Memristive devices, particularly resistive random access memory (RRAM) cells based on hafnium oxide (HfO₂) dielectrics, exhibit promising characteristics for a wide range of applications. In spite of their potential, issues related to intrinsic variability and the need for precise simulation tools and modeling methods remain a medium-term hurdle. This study addresses these challenges by investigating the resistive switching (RS) behavior of different 1T1R HfO₂-based memristors under various experimental conditions. Through a comprehensive experimental analysis, we extract RS parameters using different numerical techniques to understand the cycle-to-cycle (C2C) and device-to-device (D2D) variability. Additionally, we employ advanced simulation methodologies, including circuit breaker-based 3D simulation, to shed light on our experimental findings and provide a theoretical framework to disentangle the switching phenomena. Our results offer valuable insights into the RS mechanisms and variability, contributing to the improvement of robust parameter extraction methods, which are essential for the industrial application of memristive devices.
(38) Strain in Hybrid Organic-Inorganic Metal Halide Perovskites Microstructures by Numerical Simulations
C.L. Manganelli, B. Martin-Garcia, D. Spirito
ChemPhysChem 25(18), e202400394 (2024)
DOI: 10.1002/cphc.202400394
Hybrid organic-inorganic metal halide perovskites (HOIPs) are promising materials for optoelectronics applications. Their optical and electrical properties can be controlled by strain engineering, that results from application of local elastic deformation or deposition on pre-patterned substrates acquiring a conformal 3D shape. Most interesting, their mechanical properties depend on their crystal structure, composition and dimensionality. We explore by numerical simulations the deformation of a selection of HOIPs comprising a broad range of elastic properties. We consider a cylindrical geometry with the formation of microdomes on flakes. Radial and transversal forces are considered, finding that the radial force is more effective to obtain large deformation. Large vertical displacement and strain is obtained for HOIPs with low stiffness. The layered nature of HOIPs, that are formed by inorganic layers of different thickness and organic spacers, is also investigated, revealing a non-monotonous trend with the proportion of inorganic to organic part.
(39) Low Disorder and High Mobility 2DEG in Si/SiGe Fabricated in 200 mm BiCMOS Pilotline
A. Mistroni, F. Reichmann, Y. Yamamoto, M.H. Zoellner, G. Capellini, L. Diebel, D. Bougeard, M. Lisker
ECS Transactions 114(2), 123 (2024)
DOI: 10.1149/11402.0123ecst, (QUASAR)
Spin qubits based on quantum dots built on Si/SiGe heterostructures are a leading contender for achieving large-scale quantum computation. The quality of quantum dots fabricated on these heterostructures is directly connected to the quality of the 2D electron gas (2DEG) confined in the strained Silicon quantum well. The properties of such 2DEG can be readily assessed using Hall bar-shaped field-effect transistors (HB-FETs) and magneto-transport measurements, enabling a faster feedback loop for heterostructure optimization process. In this work, we present our recent progress in enabling silicon-based quantum computation by demonstrating fundamental components for 2DEG characterization, all developed in IHP's 200 mm BiCMOS pilot line. We demonstrate fully functional HB-FETs on Si/SiGe heterostructures grown on 200 mm silicon wafers, showcasing state-of-the-art 2DEG with maximum carrier mobility exceeding 300,000 cm²/Vs and a percolation threshold of 6.3×1010 cm⁻². These results will help advance spin qubit research based on Si/SiGe heterostructures.
(40) Bottom-Up Design of a Supercycle Recipe for Atomic Layer Deposition of Tunable Indium Gallium Zinc Oxide Thin Films
C. Morales, P. Plate, L. Marth, F. Naumann, M. Kot, C. Janowitz, P. Kus, M.H. Zoellner Ch. Wenger, K. Henkel, J.I. Flege
ACS Applied Electronic Materials 6(8), 5694 (2024)
DOI: 10.1021/acsaelm.4c00730
We present a successful bottom-up approach to design a generic plasma-enhanced atomic layer deposition (PEALD) supercycle recipe to grow high-quality indium gallium zinc oxide (IGZO) thin films with tunable composition at a relatively low temperature of 150 °C. In situ real-time ellipsometric characterization in combination with ex situ complementary techniques has been used to optimize the deposition process and quality of the films by identifying and solving growth challenges such as degree of oxidation, nucleation delays, or elemental composition. The developed supercycle approach enables facile control of the target composition by adapting the subcycle ratios within the supercycle process. Compared to other low-temperature deposition techniques resulting in amorphous films, our PEALD–IGZO process at 150 °C results in nearly amorphous, nanocrystalline films. The preparation of IGZO films at low temperature by a supercycle PEALD approach allows controlling the thickness, composition, and electrical properties while preventing thermally induced segregation.
(41) Blooming and Pruning: Learning from Mistakes with Memristive Synapses
K. Nikiruy, E. Perez, A. Baroni, K.D.S. Reddy, S. Pechmann, Ch. Wenger, M. Ziegler
Scientific Reports 14, 7802 (2024)
DOI: 10.1038/s41598-024-57660-4, (KI-IoT)
Blooming and pruning is one of the most important developmental mechanisms of the biological brain in the first years of life, enabling it to adapt its network structure to the demands of the environment. The mechanism is thought to be fundamental for the development of cognitive skills. Inspired by this, Chialvo and Bak proposed in 1999 a learning scheme that learns from mistakes by eliminating from the initial surplus of synaptic connections those that lead to an undesirable outcome. Here, this idea is implemented in a neuromorphic circuit scheme using CMOS integrated HfO2-based memristive devices. The implemented two-layer neural network learns in a self-organized manner without positive reinforcement and exploits the inherent variability of the memristive devices. A combined experimental and simulation-based parameter study is presented to find the relevant system and device parameters leading to a compact and robust memristive neuromorphic circuit that can handle association tasks.
(42) Three-Dimensional Reconstruction of Interface Roughness and Alloy Disorder in Ge/GeSi Asymmetric Coupled Quantum Wells using Electron Tomography
E. Paysen, G. Capellini, E. Talamas Simola, L. Di Gaspare, M. De Seta, M. Virgilio, A. Trampert
ACS Applied Materials & Interfaces 16(3), 4189 (2024)
DOI: 10.1021/acsami.3c15546, (FLASH)
Interfaces play an essential role in the performance of ever-shrinking semiconductor devices, making comprehensive determination of their three-dimensional (3D) structural properties increasingly important. This becomes even more relevant in compositional interfaces, as is the case for Ge/GeSi heterostructures, where chemical intermixing is pronounced in addition to their morphology. We use the electron tomography method to reconstruct buried interfaces and layers of asymmetric coupled Ge/Ge0.8Si0.2 multiquantum wells, which are considered a potential building block in THz quantum cascade lasers. The three-dimensional reconstruction is based on a series of high-angle annular dark-field scanning transmission electron microscopy images. It allows chemically sensitive investigation of a relatively large interfacial area of about (80 × 80) nm2 with subnanometer resolution as well as the analysis of several interfaces within the multiquantum well stack. Representing the interfaces as iso-concentration surfaces in the tomogram and converting them to topographic height maps allows the determination of their morphological roughness as well as layer thicknesses, reflecting low variations in either case. Simulation of the reconstructed tomogram intensities using a sigmoidal function provides in-plane-resolved maps of the chemical interface widths showing a relatively large spatial variation. The more detailed analysis of the intermixed region using thin slices from the reconstruction and additional iso-concentration surfaces provides an accurate picture of the chemical disorder of the alloy at the interface. Our comprehensive three-dimensional image of Ge/Ge0.8Si0.2 interfaces reveals that in the case of morphologically very smooth interfaces─depending on the scale considered─the interface alloy disorder itself determines the overall characteristics, a result that is fundamental for highly miscible material systems.
(43) A Current Mirror Based Read Circuit Design with Multi-Level Capability for Resistive Switching Devices
S. Pechmann, E. Perez, Ch. Wenger, A. Hagelauer
Proc. International Conference on Electronics, Information, and Communication (ICEIC 2024), (2024)
DOI: 10.1109/ICEIC61013.2024.10457188, (KI-IoT)
(44) Advancing Si Spin Qubit Research: Process Integration of Hall Bar FETs on Si/SiGe in a 200mm BiCMOS Pilot Line
F. Reichmann, A. Mistroni, Y. Yamamoto, P. Kulse, St. Marschmeyer, D. Wolansky, O. Fursenko, M.H. Zoellner, G. Capellini, L. Diebel, D. Bougeard, M. Lisker
ECS Transactions 114(2), 109 (2024)
DOI: 10.1149/11402.0109ecst, (QUASAR)
Hall bar-shaped field-effect transistors (HB-FETs) are excellent devices for comprehensive, large-scale testing of Si/SiGe heterostructures in spin qubit applications. In this paper, we detail the process integration of high-quality HB-FETs onto Si/SiGe heterostructures within the IHP 200 mm BiCMOS pilot line. We compare various SiO2 deposition techniques to identify the most suitable process for a low thermal budget gate dielectric. The integration of HB-FETs on Si/SiGe heterostructures is discussed with a focus on the contact implant. We demonstrate the functionality of the devices at room temperature and at cryogenic temperatures. Magnetotransport measurements reveal a maximum electron mobility exceeding 300,000 cm²/Vs at 1.5 K.
(45) On-Chip Refractive Index Sensors Based on Plasmonic TiN Nanohole Arrays
S. Reiter, A. Sengül, Ch. Mai, D. Spirito, Ch. Wenger, I.A. Fischer
Proc. IEEE Silicon Photonics Conference (SiPhotonics 2024), TuP10 (2024)
DOI: 10.1109/SiPhotonics60897.2024.10544048, (iCampus II)
(46) Thermal Compact Modeling and Resistive Switching Analysis in Titanium Oxide-Based Memristors
J.B. Roldán, A. Cantudo, D. Maldonado, C. Aguilera-Pedregosa, E. Moreno, T. Swoboda, F. Jimenez-Molinos, Y. Yuan, K. Zhu, M. Lanza, M.M. Rojo
ACS Applied Electronic Materials 6(2), 1424 (2024)
DOI: 10.1021/acsaelm.3c01727, (KI-IoT)
Resistive switching devices based on the Au/Ti/TiO2/Au stack were developed. In addition to standard electrical characterization by means of I–V curves, scanning thermal microscopy was employed to localize the hot spots on the top device surface (linked to conductive nanofilaments, CNFs) and perform in-operando tracking of temperature in such spots. In this way, electrical and thermal responses can be simultaneously recorded and related to each other. In a complementary way, a model for device simulation (based on COMSOL Multiphysics) was implemented in order to link the measured temperature to simulated device temperature maps. The data obtained were employed to calculate the thermal resistance to be used in compact models, such as the Stanford model, for circuit simulation. The thermal resistance extraction technique presented in this work is based on electrical and thermal measurements instead of being indirectly supported by a single fitting of the electrical response (using just I–V curves), as usual. Besides, the set and reset voltages were calculated from the complete I–V curve resistive switching series through different automatic numerical methods to assess the device variability. The series resistance was also obtained from experimental measurements, whose value is also incorporated into a compact model enhanced version.
(47) Stochastic Resonance in 2D Materials Based Memristors
J.B. Roldán, A. Cantudo, J.J. Torres, D. Maldonado, Y. Shen, W. Zheng, Y. Yuan, M. Lanza
Nature Nanotechnology 8, 7 (2024)
DOI: 10.1038/s41699-024-00444-1, (KI-IoT)
Stochastic resonance is an essential phenomenon in neurobiology, it is connected to the constructive role of noise in the signals that take place in neuronal tissues, facilitating information communication, memory, etc. Memristive devices are known to be the cornerstone of hardware neuromorphic applications since they correctly mimic biological synapses in many different facets, such as short/long-term plasticity, spike-timing-dependent plasticity, pair-pulse facilitation, etc. Different types of neural networks can be built with circuit architectures based on memristive devices (mostly spiking neural networks and artificial neural networks). In this context, stochastic resonance is a critical issue to analyze in the memristive devices that will allow the fabrication of neuromorphic circuits. We do so here with h-BN based memristive devices from different perspectives. It is found that the devices we have fabricated and measured clearly show stochastic resonance behaviour. Consequently, neuromorphic applications can be developed to account for this effect, that describes a key issue in neurobiology with strong computational implications.
(48) Selective Epitaxy of Germanium on Silicon for the Fabrication of CMOS Compatible Short-Wavelength Infrared Photodetectors
D. Ryzhak, A.A. Corley-Wiciak, P. Steglich, Y. Yamamoto, J. Frigerio, R. Giani, A. De Iacovo, D. Spirito, G. Capellini
Materials Science in Semiconductor Processing 176, 108308 (2024)
DOI: 10.1016/j.mssp.2024.108308, (VISIR2)
Here we present the selective epitaxial growth of Ge on Si using reduced pressure chemical vapor deposition on SiO2/Si solid masks realized on 200 mm Si wafers, aiming at manufacturing integrated visible/short-wavelength infrared photodetectors. By a suitable choice of the reactants and of the process conditions, we demonstrated highly selective and pattern-independent growth of Ge microstructure featuring high crystalline quality. The Ge “patches” show a distinct faceting, with a flat top (001) facet and low energy facets such as e.g. {113} and {103} at their sidewalls, independently on their size. Interdiffusion of Si in to the Ge microcrystals is limited to an extension of ∼20 nm from the heterointerface. The Ge patches resulted to be plastically relaxed with threading dislocation density values better or on par than those observed in continuous two-dimensional Ge/Si epilayer in the low 107 cm−2 range. A residual tensile strain was observed for patches with size >10 μm, due to elastic thermal strain accumulation, as confirmed by μ-Raman spectroscopy and μ-photoluminescence characterization. Polarization-dependent Raman mapping highlights the strain distribution associated to the tridimensional shape. On this material, Ge photodiodes were fabricated and characterized, showing promising optoelectronic performances.
(49) Nanoheteroepitaxy of Ge and SiGe on Si: Role of Composition and Capping on Quantum Dot Photoluminescence
D. Ryzhak, J. Aberl, E. Prado-Navarrete, L. Vukušić, A.A. Corley-Wiciak, O. Skibitzki, M.H. Zoellner, M.A. Schubert, M. Virgilio, M. Brehm, G. Capellini, D. Spirito
Nanotechnology 35(50), 505001 (2024)
DOI: 10.1088/1361-6528/ad7f5f, (NHEQuanLEA)
We investigate the nanoheteroepitaxy of SiGe and Ge quantum dots (QDs) grown on nanotips substrates realized in Si(001) wafers. Due to the lattice strain compliance, enabled by the nanometric size of the tip and the limited dot/substrate interface area, which helps to reduce dot/substrate interdiffusion, the strain and SiGe composition in the QDs could be decoupled. This demonstrates a key advantage of the nanoheteroepitaxy over the Stranski-Krastanow growth mechanism. Nearly semi-spherical, defect-free, ∼100 nm wide SiGe QDs with different Ge contents were successfully grown on the nanotips with high selectivity and size uniformity. On the dots, thin dielectric capping layers were deposited, improving the optical properties by the passivation of surface states. Intense photoluminescence was measured from all samples investigated with emission energy, intensity, and spectral linewidth dependent on the SiGe composition of the QDs and the different capping layers. Radiative recombination occurs in the QDs, and its energy matches the results of band-structure calculations that consider strain compliance between the QD and the tip. The nanotips arrangement and the selective growth of QDs allow to studying the PL emission from only 3-4 QDs, demonstrating a bright emission and the possibility of selective addressing. These findings will support the design of optoelectronic devices based on CMOS-compatible emitters.
(50) Lattice Dynamics in Chiral Tellurium by Linear and Circularly Polarized Raman Spectroscopy: Crystal Orientation and Handedness
D. Spirito, S. Marras, B. Martin-Garcia
Journal of Materials Chemistry C: Materials for Optical and Electronic Devices 12(7), 2544 (2024)
DOI: 10.1039/D3TC04333A
Trigonal tellurium (Te) has attracted researchers’ attention due to its transport and optical properties, which include electrical magneto-chiral anisotropy, spin polarization and bulk photovoltaic effect. It is the anisotropic and chiral crystal structure of Te that drive these properties, so the determination of its crystallographic orientation and handedness is key to their study. Here we explore the structural dynamics of Te bulk crystals by angle-dependent linearly polarized Raman spectroscopy and symmetry rules in three different crystallographic orientations. The angle-dependent intensity of the modes allows us to determine the arrangement of the helical chains and distinguish between crystallographic planes parallel and perpendicular to the chain axis. Furthermore, under different configurations of circularly polarized Raman measurements and crystal orientations, we observe the shift of two phonon modes only in the (0 0 1) plane. The shift is positive or negative depending on the handedness of the crystals, which we determine univocally by chemical etching. Our analysis of three different crystal faces of Te highlights the importance of selecting the proper orientation and crystallographic plane when investigating the transport and optical properties of this material. These results offer insight into the crystal structure and symmetry in other anisotropic and chiral materials, and open new paths to select a suitable crystal orientation when fabricating devices.
(51) P-Type Schottky Contacts for Graphene Adjustable-Barriers Phototransistors
C. Strobel, C.A. Chavarin, M. Knaut, M. Albert, A. Heinzig, L. Gummadi, Ch. Wenger, T. Mikolajick
Nanomaterials 14(13), 1140 (2024)
DOI: 10.3390/nano14131140, (Graphen)
The graphene adjustable-barriers phototransistor is an attractive novel device for potential high speed and high responsivity dual-band photodetection. In this device graphene is embedded between the semiconductors silicon and germanium. Both n-type and p-type Schottky contacts between graphene and the semiconductors are required for this device. While n-type Schottky contacts are widely investigated, reports about p-type Schottky contacts between graphene and the two involved semiconductors are scarce. In this study, we demonstrate a p-type Schottky contact between graphene and p-germanium. A clear rectification with on-off ratios of close to 103 (± 5V) and a distinct photoresponse at telecommunication wavelengths in the infrared are achieved. Further, p-type silicon is transferred to or deposited on graphene and we also observe rectification and photoresponse in the visible range for some of these p-type Schottky junctions. These results are an important step towards a functional graphene adjustable-barriers phototransistor.
(52) High Gain Graphene Based Hot Electron Transistor with Record High Saturated Output Current Density
C. Strobel, C.A. Chavarin, M. Knaut, S. Völkel, M. Albert, A. Hiess, B. Max, Ch. Wenger, R. Kirchner, T. Mikolajick
Advanced Electronic Materials 10(2), 2300624 (2024)
DOI: 10.1002/aelm.202300624, (FFLEXCOM (D020))
Hot electron transistors (HETs) represent an exciting frontier in semiconductor technology, holding the promise of high-speed and high-frequency electronics. With the exploration of two-dimensional materials such as graphene and new device architectures, HETs are poised to revolutionize the landscape of modern electronics. This study highlights a novel HET structure with a record output current density of 800 A/cm² and a high current gain α, fabricated using a scalable fabrication approach. The HET structure comprises two-dimensional hexagonal boron nitride (hBN) and graphene layers wet transferred to a germanium substrate. The combination of these materials results in exceptional performance, particularly in terms of the highly saturated output current density. The scalable fabrication scheme used to produce the HET opens up opportunities for large-scale manufacturing. This breakthrough in HET technology holds promise for advanced electronic applications, offering high current capabilities in a practical and manufacturable device.
(53) Asymmetric-Coupled Ge/SiGe Quantum Wells for Second Harmonic Generation at 7.1 THz in Integrated Waveguides: A Theoretical Study
E. Talamas Simola, M. Ortolani, L. Di Gaspare, G. Capellini, M. De Seta, M. Virgilio
Nanophotonics 13(10), 1781 (2024)
DOI: 10.1515/nanoph-2023-0697, (FLASH)
We present a theoretical investigation of guided second harmonic generation at THz frequencies in SiGe waveguides embedding n-type Ge/SiGe asymmetric coupled quantum wells to engineer a giant second order nonlinear susceptibility. A characteristic of the chosen material system is the existence of large off-diagonal elements in the χ2 tensor, coupling optical modes with different polarization. To account for this effect, we generalize the coupled-mode theory, proposing a theoretical model suitable for concurrently resolving every second harmonic generation interaction among guide-sustained modes, regardless of which χ2 tensor elements it originates from. Furthermore, we exploit the presence of off-diagonal χ2 elements and the peculiarity of the SiGe material system to develop a simple and novel approach to achieve perfect phase matching without requiring any fabrication process. For a realistic design of the quantum heterostructure we estimate second order nonlinear susceptibility peak values of ∼7 and ∼1.4 × 105 pm/V for diagonal and off diagonal χ2 elements, respectively. Embedding such heterostructure in Ge-rich SiGe waveguides of thicknesses of the order of 10–15 μm leads to second harmonic generation efficiencies comprised between 0.2 and 2 %, depending on the choice of device parameters. As a case study, we focus on the technologically relevant frequency of 7.1 THz, yet the results we report may be extended to the whole 5–20 THz range.
(54) On the Asymmetry of Resistive Switching Transitions
G. Vinuesa, H. Garcia, E. Perez, Ch. Wenger, I. Iniguez-de-la-Torre, T. Gonzalez, S. Duenas, H. Castan,
Electronics (MDPI) 13(13), 2639 (2024)
DOI: 10.3390/electronics13132639, (KI-IoT)
In this study, the resistive switching phenomena in TiN/Ti/HfO2/Ti metal–insulator–metal stacks is investigated, mainly focusing on the analysis of set and reset transitions. The electrical measurements in a wide temperature range reveal that the switching transitions require less voltage (and thus, less energy) as temperature rises, with the reset process being much more temperature sensitive. The main conduction mechanism in both resistance states is Space-charge-limited Conduction, but the high conductivity state also shows Schottky emission, explaining its temperature dependence. Moreover, the temporal evolution of these transitions reveals clear differences between them, as their current transient response is completely different. While the set is sudden, the reset process development is clearly non-linear, closely resembling a sigmoid function. This asymmetry between switching processes is of extreme importance in the manipulation and control of the multi-level characteristics and has clear implications in the possible applications of resistive switching devices in neuromorphic computing.
(55) Effect of the Temperature on the Performance and Dynamic Behaviour of HfO2-based RRAM Devices
G. Vinuesa, H. Garcia, S. Dueñas, H. Castan, I. Iñiguez-de-la-Torre, T. Gonzalez, K.D.S. Reddy, M. Uhlmann, Ch. Wenger, E. Perez
Proc. 245th ECS Meeting: Advancing Solid State & Electrochemical Science & Technology (ECS Meeting 2024), abstr. book 1297 (2024)
DOI: 10.1149/MA2024-01211297mtgabs, (KI-IoT)
(56) Cycle-Accurate FPGA Emulation of RRAM Crossbar Array: Efficient Device and Variability Modeling with Energy Consumption Assessment
J. Wen, F. Vargas, F. Zhu, D. Reiser, A. Baroni, M. Fritscher, E. Perez, M. Reichenbach, Ch. Wenger, M. Krstic
Proc. 25th IEEE Latin-American Test Symposium (LATS 2024), (2024)
DOI: 10.1109/LATS62223.2024.10534601, (6G-RIC)
(57) Towards Reliable and Energy-Efficient RRAM based Discrete Fourier Transform Accelerator
J. Wen, A. Baroni, E. Perez, M. Uhlmann, M. Fritscher, K. KrishneGowda, M. Ulbricht, Ch. Wenger, M. Krstic
Proc. 27th Design, Automation and Test in Europe (DATE 2024), (2024)
(6G-RIC)
(58) Thin and Locally Dislocation-Free SiGe Virtual Substrate Fabrication by Lateral Selective Growth
Y. Yamamoto, W.-C. Wen, M.A. Schubert, A.A. Corley-Wiciak, S. Sugawa, Y. Ito, R. Yokogawa, H. Han, R. Loo, A. Ogura, B. Tillack
Japanese Journal of Applied Physics 63(2), 02SP53 (2024)
DOI: 10.35848/1347-4065/ad189d
Locally dislocation-free SiGe-on-insulator (SGOI) is fabricated by chemical vapor deposition. Lateral selective SiGe growth of ~30%, ~45% and ~55% is performed around ~1 µm square Si(001) pillar located under the center of a 6.3 µm square SiO2 on Si-on-insulator substrate which is formed by H2-HCl vapor phase etching. The selective SiGe is deposited by H2-SiH2Cl2-GeH4-HCl. In the deposited SiGe layer, tensile strain is observed by top-view. The degree of strain is slightly increased at the corner of the SiGe. The tensile strain is caused by the partial compressive strain of SiGe in lateral direction and thermal expansion difference between Si and SiGe. Slightly higher Ge incorporation is observed in higher tensile strain region. At the peaks formed between the facets of growth front, Ge incorporation is reduced. These phenomena are pronounced for SiGe with higher Ge contents. Dislocation-free SGOI is formed along <010> from the Si pillar by lateral aspect-ratio-trapping.
(59) The Interplay between Strain, Sn Content, and Temperature on Spatially-Dependent Bandgap in Ge1-xSnx Microdisks
I. Zaitsev, A.A. Corley-Wiciak, C. Corley-Wiciak, M.H. Zoellner, C. Richter, E. Zatterin, M. Virgilio, Beatriz Martín-García, D. Spirito, C.L. Manganelli
Physica Status Solidi - Rapid Research Letters 18(3), 2300348 (2024)
DOI: 10.1002/pssr.202300348
Germanium-tin microdisks are promising structures for CMOS-compatible lasing. Their emission properties depend on Sn concentration, strain, and operating temperature. Critically, the band structure of the alloy varies along the disk due to the different lattice deformation associated with the mechanical constraints in the microstructures. We report an experimental and numerical study of Ge1-xSnx microdisk with Sn concentration between 8.5 and 14 at.%. Combining finite element method calculations, micro-Raman spectroscopy and X-ray diffraction spectroscopy enables a comprehensive understanding of mechanical deformation, where computational predictions are experimentally validated, leading to a robust model and insight into the strain landscape. Through micro-photo-luminescence experiments, the temperature dependence of the band gap of Ge1-xSnx is parametrized using the Varshni formula with respect to strain and Sn content. These results are the input for a spatially-dependent band structure calculation based on the deformation potential theory. We observe that Sn content and temperature have comparable effects on the bandgap, yielding a decrease of more than 20 meV for an increase of 1 at.% or 100 K, respectively. We also find that the strain gradient impacts the band structure in the whole volume of the microdisk. These findings correlate structural properties to the emission wavelength and spectral width of Ge1-xSnx microdisk lasers, thus demonstrating the importance of material-related consideration on the design of optoelectronic microstructures.